Newer
Older
alert / js / node_modules / pako / dist / pako_deflate.js
@Réz István Réz István on 18 Nov 2021 125 KB first commit
/* pako 1.0.11 nodeca/pako */(function(f){if(typeof exports==="object"&&typeof module!=="undefined"){module.exports=f()}else if(typeof define==="function"&&define.amd){define([],f)}else{var g;if(typeof window!=="undefined"){g=window}else if(typeof global!=="undefined"){g=global}else if(typeof self!=="undefined"){g=self}else{g=this}g.pako = f()}})(function(){var define,module,exports;return (function(){function r(e,n,t){function o(i,f){if(!n[i]){if(!e[i]){var c="function"==typeof require&&require;if(!f&&c)return c(i,!0);if(u)return u(i,!0);var a=new Error("Cannot find module '"+i+"'");throw a.code="MODULE_NOT_FOUND",a}var p=n[i]={exports:{}};e[i][0].call(p.exports,function(r){var n=e[i][1][r];return o(n||r)},p,p.exports,r,e,n,t)}return n[i].exports}for(var u="function"==typeof require&&require,i=0;i<t.length;i++)o(t[i]);return o}return r})()({1:[function(require,module,exports){
'use strict';


var TYPED_OK =  (typeof Uint8Array !== 'undefined') &&
                (typeof Uint16Array !== 'undefined') &&
                (typeof Int32Array !== 'undefined');

function _has(obj, key) {
  return Object.prototype.hasOwnProperty.call(obj, key);
}

exports.assign = function (obj /*from1, from2, from3, ...*/) {
  var sources = Array.prototype.slice.call(arguments, 1);
  while (sources.length) {
    var source = sources.shift();
    if (!source) { continue; }

    if (typeof source !== 'object') {
      throw new TypeError(source + 'must be non-object');
    }

    for (var p in source) {
      if (_has(source, p)) {
        obj[p] = source[p];
      }
    }
  }

  return obj;
};


// reduce buffer size, avoiding mem copy
exports.shrinkBuf = function (buf, size) {
  if (buf.length === size) { return buf; }
  if (buf.subarray) { return buf.subarray(0, size); }
  buf.length = size;
  return buf;
};


var fnTyped = {
  arraySet: function (dest, src, src_offs, len, dest_offs) {
    if (src.subarray && dest.subarray) {
      dest.set(src.subarray(src_offs, src_offs + len), dest_offs);
      return;
    }
    // Fallback to ordinary array
    for (var i = 0; i < len; i++) {
      dest[dest_offs + i] = src[src_offs + i];
    }
  },
  // Join array of chunks to single array.
  flattenChunks: function (chunks) {
    var i, l, len, pos, chunk, result;

    // calculate data length
    len = 0;
    for (i = 0, l = chunks.length; i < l; i++) {
      len += chunks[i].length;
    }

    // join chunks
    result = new Uint8Array(len);
    pos = 0;
    for (i = 0, l = chunks.length; i < l; i++) {
      chunk = chunks[i];
      result.set(chunk, pos);
      pos += chunk.length;
    }

    return result;
  }
};

var fnUntyped = {
  arraySet: function (dest, src, src_offs, len, dest_offs) {
    for (var i = 0; i < len; i++) {
      dest[dest_offs + i] = src[src_offs + i];
    }
  },
  // Join array of chunks to single array.
  flattenChunks: function (chunks) {
    return [].concat.apply([], chunks);
  }
};


// Enable/Disable typed arrays use, for testing
//
exports.setTyped = function (on) {
  if (on) {
    exports.Buf8  = Uint8Array;
    exports.Buf16 = Uint16Array;
    exports.Buf32 = Int32Array;
    exports.assign(exports, fnTyped);
  } else {
    exports.Buf8  = Array;
    exports.Buf16 = Array;
    exports.Buf32 = Array;
    exports.assign(exports, fnUntyped);
  }
};

exports.setTyped(TYPED_OK);

},{}],2:[function(require,module,exports){
// String encode/decode helpers
'use strict';


var utils = require('./common');


// Quick check if we can use fast array to bin string conversion
//
// - apply(Array) can fail on Android 2.2
// - apply(Uint8Array) can fail on iOS 5.1 Safari
//
var STR_APPLY_OK = true;
var STR_APPLY_UIA_OK = true;

try { String.fromCharCode.apply(null, [ 0 ]); } catch (__) { STR_APPLY_OK = false; }
try { String.fromCharCode.apply(null, new Uint8Array(1)); } catch (__) { STR_APPLY_UIA_OK = false; }


// Table with utf8 lengths (calculated by first byte of sequence)
// Note, that 5 & 6-byte values and some 4-byte values can not be represented in JS,
// because max possible codepoint is 0x10ffff
var _utf8len = new utils.Buf8(256);
for (var q = 0; q < 256; q++) {
  _utf8len[q] = (q >= 252 ? 6 : q >= 248 ? 5 : q >= 240 ? 4 : q >= 224 ? 3 : q >= 192 ? 2 : 1);
}
_utf8len[254] = _utf8len[254] = 1; // Invalid sequence start


// convert string to array (typed, when possible)
exports.string2buf = function (str) {
  var buf, c, c2, m_pos, i, str_len = str.length, buf_len = 0;

  // count binary size
  for (m_pos = 0; m_pos < str_len; m_pos++) {
    c = str.charCodeAt(m_pos);
    if ((c & 0xfc00) === 0xd800 && (m_pos + 1 < str_len)) {
      c2 = str.charCodeAt(m_pos + 1);
      if ((c2 & 0xfc00) === 0xdc00) {
        c = 0x10000 + ((c - 0xd800) << 10) + (c2 - 0xdc00);
        m_pos++;
      }
    }
    buf_len += c < 0x80 ? 1 : c < 0x800 ? 2 : c < 0x10000 ? 3 : 4;
  }

  // allocate buffer
  buf = new utils.Buf8(buf_len);

  // convert
  for (i = 0, m_pos = 0; i < buf_len; m_pos++) {
    c = str.charCodeAt(m_pos);
    if ((c & 0xfc00) === 0xd800 && (m_pos + 1 < str_len)) {
      c2 = str.charCodeAt(m_pos + 1);
      if ((c2 & 0xfc00) === 0xdc00) {
        c = 0x10000 + ((c - 0xd800) << 10) + (c2 - 0xdc00);
        m_pos++;
      }
    }
    if (c < 0x80) {
      /* one byte */
      buf[i++] = c;
    } else if (c < 0x800) {
      /* two bytes */
      buf[i++] = 0xC0 | (c >>> 6);
      buf[i++] = 0x80 | (c & 0x3f);
    } else if (c < 0x10000) {
      /* three bytes */
      buf[i++] = 0xE0 | (c >>> 12);
      buf[i++] = 0x80 | (c >>> 6 & 0x3f);
      buf[i++] = 0x80 | (c & 0x3f);
    } else {
      /* four bytes */
      buf[i++] = 0xf0 | (c >>> 18);
      buf[i++] = 0x80 | (c >>> 12 & 0x3f);
      buf[i++] = 0x80 | (c >>> 6 & 0x3f);
      buf[i++] = 0x80 | (c & 0x3f);
    }
  }

  return buf;
};

// Helper (used in 2 places)
function buf2binstring(buf, len) {
  // On Chrome, the arguments in a function call that are allowed is `65534`.
  // If the length of the buffer is smaller than that, we can use this optimization,
  // otherwise we will take a slower path.
  if (len < 65534) {
    if ((buf.subarray && STR_APPLY_UIA_OK) || (!buf.subarray && STR_APPLY_OK)) {
      return String.fromCharCode.apply(null, utils.shrinkBuf(buf, len));
    }
  }

  var result = '';
  for (var i = 0; i < len; i++) {
    result += String.fromCharCode(buf[i]);
  }
  return result;
}


// Convert byte array to binary string
exports.buf2binstring = function (buf) {
  return buf2binstring(buf, buf.length);
};


// Convert binary string (typed, when possible)
exports.binstring2buf = function (str) {
  var buf = new utils.Buf8(str.length);
  for (var i = 0, len = buf.length; i < len; i++) {
    buf[i] = str.charCodeAt(i);
  }
  return buf;
};


// convert array to string
exports.buf2string = function (buf, max) {
  var i, out, c, c_len;
  var len = max || buf.length;

  // Reserve max possible length (2 words per char)
  // NB: by unknown reasons, Array is significantly faster for
  //     String.fromCharCode.apply than Uint16Array.
  var utf16buf = new Array(len * 2);

  for (out = 0, i = 0; i < len;) {
    c = buf[i++];
    // quick process ascii
    if (c < 0x80) { utf16buf[out++] = c; continue; }

    c_len = _utf8len[c];
    // skip 5 & 6 byte codes
    if (c_len > 4) { utf16buf[out++] = 0xfffd; i += c_len - 1; continue; }

    // apply mask on first byte
    c &= c_len === 2 ? 0x1f : c_len === 3 ? 0x0f : 0x07;
    // join the rest
    while (c_len > 1 && i < len) {
      c = (c << 6) | (buf[i++] & 0x3f);
      c_len--;
    }

    // terminated by end of string?
    if (c_len > 1) { utf16buf[out++] = 0xfffd; continue; }

    if (c < 0x10000) {
      utf16buf[out++] = c;
    } else {
      c -= 0x10000;
      utf16buf[out++] = 0xd800 | ((c >> 10) & 0x3ff);
      utf16buf[out++] = 0xdc00 | (c & 0x3ff);
    }
  }

  return buf2binstring(utf16buf, out);
};


// Calculate max possible position in utf8 buffer,
// that will not break sequence. If that's not possible
// - (very small limits) return max size as is.
//
// buf[] - utf8 bytes array
// max   - length limit (mandatory);
exports.utf8border = function (buf, max) {
  var pos;

  max = max || buf.length;
  if (max > buf.length) { max = buf.length; }

  // go back from last position, until start of sequence found
  pos = max - 1;
  while (pos >= 0 && (buf[pos] & 0xC0) === 0x80) { pos--; }

  // Very small and broken sequence,
  // return max, because we should return something anyway.
  if (pos < 0) { return max; }

  // If we came to start of buffer - that means buffer is too small,
  // return max too.
  if (pos === 0) { return max; }

  return (pos + _utf8len[buf[pos]] > max) ? pos : max;
};

},{"./common":1}],3:[function(require,module,exports){
'use strict';

// Note: adler32 takes 12% for level 0 and 2% for level 6.
// It isn't worth it to make additional optimizations as in original.
// Small size is preferable.

// (C) 1995-2013 Jean-loup Gailly and Mark Adler
// (C) 2014-2017 Vitaly Puzrin and Andrey Tupitsin
//
// This software is provided 'as-is', without any express or implied
// warranty. In no event will the authors be held liable for any damages
// arising from the use of this software.
//
// Permission is granted to anyone to use this software for any purpose,
// including commercial applications, and to alter it and redistribute it
// freely, subject to the following restrictions:
//
// 1. The origin of this software must not be misrepresented; you must not
//   claim that you wrote the original software. If you use this software
//   in a product, an acknowledgment in the product documentation would be
//   appreciated but is not required.
// 2. Altered source versions must be plainly marked as such, and must not be
//   misrepresented as being the original software.
// 3. This notice may not be removed or altered from any source distribution.

function adler32(adler, buf, len, pos) {
  var s1 = (adler & 0xffff) |0,
      s2 = ((adler >>> 16) & 0xffff) |0,
      n = 0;

  while (len !== 0) {
    // Set limit ~ twice less than 5552, to keep
    // s2 in 31-bits, because we force signed ints.
    // in other case %= will fail.
    n = len > 2000 ? 2000 : len;
    len -= n;

    do {
      s1 = (s1 + buf[pos++]) |0;
      s2 = (s2 + s1) |0;
    } while (--n);

    s1 %= 65521;
    s2 %= 65521;
  }

  return (s1 | (s2 << 16)) |0;
}


module.exports = adler32;

},{}],4:[function(require,module,exports){
'use strict';

// Note: we can't get significant speed boost here.
// So write code to minimize size - no pregenerated tables
// and array tools dependencies.

// (C) 1995-2013 Jean-loup Gailly and Mark Adler
// (C) 2014-2017 Vitaly Puzrin and Andrey Tupitsin
//
// This software is provided 'as-is', without any express or implied
// warranty. In no event will the authors be held liable for any damages
// arising from the use of this software.
//
// Permission is granted to anyone to use this software for any purpose,
// including commercial applications, and to alter it and redistribute it
// freely, subject to the following restrictions:
//
// 1. The origin of this software must not be misrepresented; you must not
//   claim that you wrote the original software. If you use this software
//   in a product, an acknowledgment in the product documentation would be
//   appreciated but is not required.
// 2. Altered source versions must be plainly marked as such, and must not be
//   misrepresented as being the original software.
// 3. This notice may not be removed or altered from any source distribution.

// Use ordinary array, since untyped makes no boost here
function makeTable() {
  var c, table = [];

  for (var n = 0; n < 256; n++) {
    c = n;
    for (var k = 0; k < 8; k++) {
      c = ((c & 1) ? (0xEDB88320 ^ (c >>> 1)) : (c >>> 1));
    }
    table[n] = c;
  }

  return table;
}

// Create table on load. Just 255 signed longs. Not a problem.
var crcTable = makeTable();


function crc32(crc, buf, len, pos) {
  var t = crcTable,
      end = pos + len;

  crc ^= -1;

  for (var i = pos; i < end; i++) {
    crc = (crc >>> 8) ^ t[(crc ^ buf[i]) & 0xFF];
  }

  return (crc ^ (-1)); // >>> 0;
}


module.exports = crc32;

},{}],5:[function(require,module,exports){
'use strict';

// (C) 1995-2013 Jean-loup Gailly and Mark Adler
// (C) 2014-2017 Vitaly Puzrin and Andrey Tupitsin
//
// This software is provided 'as-is', without any express or implied
// warranty. In no event will the authors be held liable for any damages
// arising from the use of this software.
//
// Permission is granted to anyone to use this software for any purpose,
// including commercial applications, and to alter it and redistribute it
// freely, subject to the following restrictions:
//
// 1. The origin of this software must not be misrepresented; you must not
//   claim that you wrote the original software. If you use this software
//   in a product, an acknowledgment in the product documentation would be
//   appreciated but is not required.
// 2. Altered source versions must be plainly marked as such, and must not be
//   misrepresented as being the original software.
// 3. This notice may not be removed or altered from any source distribution.

var utils   = require('../utils/common');
var trees   = require('./trees');
var adler32 = require('./adler32');
var crc32   = require('./crc32');
var msg     = require('./messages');

/* Public constants ==========================================================*/
/* ===========================================================================*/


/* Allowed flush values; see deflate() and inflate() below for details */
var Z_NO_FLUSH      = 0;
var Z_PARTIAL_FLUSH = 1;
//var Z_SYNC_FLUSH    = 2;
var Z_FULL_FLUSH    = 3;
var Z_FINISH        = 4;
var Z_BLOCK         = 5;
//var Z_TREES         = 6;


/* Return codes for the compression/decompression functions. Negative values
 * are errors, positive values are used for special but normal events.
 */
var Z_OK            = 0;
var Z_STREAM_END    = 1;
//var Z_NEED_DICT     = 2;
//var Z_ERRNO         = -1;
var Z_STREAM_ERROR  = -2;
var Z_DATA_ERROR    = -3;
//var Z_MEM_ERROR     = -4;
var Z_BUF_ERROR     = -5;
//var Z_VERSION_ERROR = -6;


/* compression levels */
//var Z_NO_COMPRESSION      = 0;
//var Z_BEST_SPEED          = 1;
//var Z_BEST_COMPRESSION    = 9;
var Z_DEFAULT_COMPRESSION = -1;


var Z_FILTERED            = 1;
var Z_HUFFMAN_ONLY        = 2;
var Z_RLE                 = 3;
var Z_FIXED               = 4;
var Z_DEFAULT_STRATEGY    = 0;

/* Possible values of the data_type field (though see inflate()) */
//var Z_BINARY              = 0;
//var Z_TEXT                = 1;
//var Z_ASCII               = 1; // = Z_TEXT
var Z_UNKNOWN             = 2;


/* The deflate compression method */
var Z_DEFLATED  = 8;

/*============================================================================*/


var MAX_MEM_LEVEL = 9;
/* Maximum value for memLevel in deflateInit2 */
var MAX_WBITS = 15;
/* 32K LZ77 window */
var DEF_MEM_LEVEL = 8;


var LENGTH_CODES  = 29;
/* number of length codes, not counting the special END_BLOCK code */
var LITERALS      = 256;
/* number of literal bytes 0..255 */
var L_CODES       = LITERALS + 1 + LENGTH_CODES;
/* number of Literal or Length codes, including the END_BLOCK code */
var D_CODES       = 30;
/* number of distance codes */
var BL_CODES      = 19;
/* number of codes used to transfer the bit lengths */
var HEAP_SIZE     = 2 * L_CODES + 1;
/* maximum heap size */
var MAX_BITS  = 15;
/* All codes must not exceed MAX_BITS bits */

var MIN_MATCH = 3;
var MAX_MATCH = 258;
var MIN_LOOKAHEAD = (MAX_MATCH + MIN_MATCH + 1);

var PRESET_DICT = 0x20;

var INIT_STATE = 42;
var EXTRA_STATE = 69;
var NAME_STATE = 73;
var COMMENT_STATE = 91;
var HCRC_STATE = 103;
var BUSY_STATE = 113;
var FINISH_STATE = 666;

var BS_NEED_MORE      = 1; /* block not completed, need more input or more output */
var BS_BLOCK_DONE     = 2; /* block flush performed */
var BS_FINISH_STARTED = 3; /* finish started, need only more output at next deflate */
var BS_FINISH_DONE    = 4; /* finish done, accept no more input or output */

var OS_CODE = 0x03; // Unix :) . Don't detect, use this default.

function err(strm, errorCode) {
  strm.msg = msg[errorCode];
  return errorCode;
}

function rank(f) {
  return ((f) << 1) - ((f) > 4 ? 9 : 0);
}

function zero(buf) { var len = buf.length; while (--len >= 0) { buf[len] = 0; } }


/* =========================================================================
 * Flush as much pending output as possible. All deflate() output goes
 * through this function so some applications may wish to modify it
 * to avoid allocating a large strm->output buffer and copying into it.
 * (See also read_buf()).
 */
function flush_pending(strm) {
  var s = strm.state;

  //_tr_flush_bits(s);
  var len = s.pending;
  if (len > strm.avail_out) {
    len = strm.avail_out;
  }
  if (len === 0) { return; }

  utils.arraySet(strm.output, s.pending_buf, s.pending_out, len, strm.next_out);
  strm.next_out += len;
  s.pending_out += len;
  strm.total_out += len;
  strm.avail_out -= len;
  s.pending -= len;
  if (s.pending === 0) {
    s.pending_out = 0;
  }
}


function flush_block_only(s, last) {
  trees._tr_flush_block(s, (s.block_start >= 0 ? s.block_start : -1), s.strstart - s.block_start, last);
  s.block_start = s.strstart;
  flush_pending(s.strm);
}


function put_byte(s, b) {
  s.pending_buf[s.pending++] = b;
}


/* =========================================================================
 * Put a short in the pending buffer. The 16-bit value is put in MSB order.
 * IN assertion: the stream state is correct and there is enough room in
 * pending_buf.
 */
function putShortMSB(s, b) {
//  put_byte(s, (Byte)(b >> 8));
//  put_byte(s, (Byte)(b & 0xff));
  s.pending_buf[s.pending++] = (b >>> 8) & 0xff;
  s.pending_buf[s.pending++] = b & 0xff;
}


/* ===========================================================================
 * Read a new buffer from the current input stream, update the adler32
 * and total number of bytes read.  All deflate() input goes through
 * this function so some applications may wish to modify it to avoid
 * allocating a large strm->input buffer and copying from it.
 * (See also flush_pending()).
 */
function read_buf(strm, buf, start, size) {
  var len = strm.avail_in;

  if (len > size) { len = size; }
  if (len === 0) { return 0; }

  strm.avail_in -= len;

  // zmemcpy(buf, strm->next_in, len);
  utils.arraySet(buf, strm.input, strm.next_in, len, start);
  if (strm.state.wrap === 1) {
    strm.adler = adler32(strm.adler, buf, len, start);
  }

  else if (strm.state.wrap === 2) {
    strm.adler = crc32(strm.adler, buf, len, start);
  }

  strm.next_in += len;
  strm.total_in += len;

  return len;
}


/* ===========================================================================
 * Set match_start to the longest match starting at the given string and
 * return its length. Matches shorter or equal to prev_length are discarded,
 * in which case the result is equal to prev_length and match_start is
 * garbage.
 * IN assertions: cur_match is the head of the hash chain for the current
 *   string (strstart) and its distance is <= MAX_DIST, and prev_length >= 1
 * OUT assertion: the match length is not greater than s->lookahead.
 */
function longest_match(s, cur_match) {
  var chain_length = s.max_chain_length;      /* max hash chain length */
  var scan = s.strstart; /* current string */
  var match;                       /* matched string */
  var len;                           /* length of current match */
  var best_len = s.prev_length;              /* best match length so far */
  var nice_match = s.nice_match;             /* stop if match long enough */
  var limit = (s.strstart > (s.w_size - MIN_LOOKAHEAD)) ?
      s.strstart - (s.w_size - MIN_LOOKAHEAD) : 0/*NIL*/;

  var _win = s.window; // shortcut

  var wmask = s.w_mask;
  var prev  = s.prev;

  /* Stop when cur_match becomes <= limit. To simplify the code,
   * we prevent matches with the string of window index 0.
   */

  var strend = s.strstart + MAX_MATCH;
  var scan_end1  = _win[scan + best_len - 1];
  var scan_end   = _win[scan + best_len];

  /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
   * It is easy to get rid of this optimization if necessary.
   */
  // Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever");

  /* Do not waste too much time if we already have a good match: */
  if (s.prev_length >= s.good_match) {
    chain_length >>= 2;
  }
  /* Do not look for matches beyond the end of the input. This is necessary
   * to make deflate deterministic.
   */
  if (nice_match > s.lookahead) { nice_match = s.lookahead; }

  // Assert((ulg)s->strstart <= s->window_size-MIN_LOOKAHEAD, "need lookahead");

  do {
    // Assert(cur_match < s->strstart, "no future");
    match = cur_match;

    /* Skip to next match if the match length cannot increase
     * or if the match length is less than 2.  Note that the checks below
     * for insufficient lookahead only occur occasionally for performance
     * reasons.  Therefore uninitialized memory will be accessed, and
     * conditional jumps will be made that depend on those values.
     * However the length of the match is limited to the lookahead, so
     * the output of deflate is not affected by the uninitialized values.
     */

    if (_win[match + best_len]     !== scan_end  ||
        _win[match + best_len - 1] !== scan_end1 ||
        _win[match]                !== _win[scan] ||
        _win[++match]              !== _win[scan + 1]) {
      continue;
    }

    /* The check at best_len-1 can be removed because it will be made
     * again later. (This heuristic is not always a win.)
     * It is not necessary to compare scan[2] and match[2] since they
     * are always equal when the other bytes match, given that
     * the hash keys are equal and that HASH_BITS >= 8.
     */
    scan += 2;
    match++;
    // Assert(*scan == *match, "match[2]?");

    /* We check for insufficient lookahead only every 8th comparison;
     * the 256th check will be made at strstart+258.
     */
    do {
      /*jshint noempty:false*/
    } while (_win[++scan] === _win[++match] && _win[++scan] === _win[++match] &&
             _win[++scan] === _win[++match] && _win[++scan] === _win[++match] &&
             _win[++scan] === _win[++match] && _win[++scan] === _win[++match] &&
             _win[++scan] === _win[++match] && _win[++scan] === _win[++match] &&
             scan < strend);

    // Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan");

    len = MAX_MATCH - (strend - scan);
    scan = strend - MAX_MATCH;

    if (len > best_len) {
      s.match_start = cur_match;
      best_len = len;
      if (len >= nice_match) {
        break;
      }
      scan_end1  = _win[scan + best_len - 1];
      scan_end   = _win[scan + best_len];
    }
  } while ((cur_match = prev[cur_match & wmask]) > limit && --chain_length !== 0);

  if (best_len <= s.lookahead) {
    return best_len;
  }
  return s.lookahead;
}


/* ===========================================================================
 * Fill the window when the lookahead becomes insufficient.
 * Updates strstart and lookahead.
 *
 * IN assertion: lookahead < MIN_LOOKAHEAD
 * OUT assertions: strstart <= window_size-MIN_LOOKAHEAD
 *    At least one byte has been read, or avail_in == 0; reads are
 *    performed for at least two bytes (required for the zip translate_eol
 *    option -- not supported here).
 */
function fill_window(s) {
  var _w_size = s.w_size;
  var p, n, m, more, str;

  //Assert(s->lookahead < MIN_LOOKAHEAD, "already enough lookahead");

  do {
    more = s.window_size - s.lookahead - s.strstart;

    // JS ints have 32 bit, block below not needed
    /* Deal with !@#$% 64K limit: */
    //if (sizeof(int) <= 2) {
    //    if (more == 0 && s->strstart == 0 && s->lookahead == 0) {
    //        more = wsize;
    //
    //  } else if (more == (unsigned)(-1)) {
    //        /* Very unlikely, but possible on 16 bit machine if
    //         * strstart == 0 && lookahead == 1 (input done a byte at time)
    //         */
    //        more--;
    //    }
    //}


    /* If the window is almost full and there is insufficient lookahead,
     * move the upper half to the lower one to make room in the upper half.
     */
    if (s.strstart >= _w_size + (_w_size - MIN_LOOKAHEAD)) {

      utils.arraySet(s.window, s.window, _w_size, _w_size, 0);
      s.match_start -= _w_size;
      s.strstart -= _w_size;
      /* we now have strstart >= MAX_DIST */
      s.block_start -= _w_size;

      /* Slide the hash table (could be avoided with 32 bit values
       at the expense of memory usage). We slide even when level == 0
       to keep the hash table consistent if we switch back to level > 0
       later. (Using level 0 permanently is not an optimal usage of
       zlib, so we don't care about this pathological case.)
       */

      n = s.hash_size;
      p = n;
      do {
        m = s.head[--p];
        s.head[p] = (m >= _w_size ? m - _w_size : 0);
      } while (--n);

      n = _w_size;
      p = n;
      do {
        m = s.prev[--p];
        s.prev[p] = (m >= _w_size ? m - _w_size : 0);
        /* If n is not on any hash chain, prev[n] is garbage but
         * its value will never be used.
         */
      } while (--n);

      more += _w_size;
    }
    if (s.strm.avail_in === 0) {
      break;
    }

    /* If there was no sliding:
     *    strstart <= WSIZE+MAX_DIST-1 && lookahead <= MIN_LOOKAHEAD - 1 &&
     *    more == window_size - lookahead - strstart
     * => more >= window_size - (MIN_LOOKAHEAD-1 + WSIZE + MAX_DIST-1)
     * => more >= window_size - 2*WSIZE + 2
     * In the BIG_MEM or MMAP case (not yet supported),
     *   window_size == input_size + MIN_LOOKAHEAD  &&
     *   strstart + s->lookahead <= input_size => more >= MIN_LOOKAHEAD.
     * Otherwise, window_size == 2*WSIZE so more >= 2.
     * If there was sliding, more >= WSIZE. So in all cases, more >= 2.
     */
    //Assert(more >= 2, "more < 2");
    n = read_buf(s.strm, s.window, s.strstart + s.lookahead, more);
    s.lookahead += n;

    /* Initialize the hash value now that we have some input: */
    if (s.lookahead + s.insert >= MIN_MATCH) {
      str = s.strstart - s.insert;
      s.ins_h = s.window[str];

      /* UPDATE_HASH(s, s->ins_h, s->window[str + 1]); */
      s.ins_h = ((s.ins_h << s.hash_shift) ^ s.window[str + 1]) & s.hash_mask;
//#if MIN_MATCH != 3
//        Call update_hash() MIN_MATCH-3 more times
//#endif
      while (s.insert) {
        /* UPDATE_HASH(s, s->ins_h, s->window[str + MIN_MATCH-1]); */
        s.ins_h = ((s.ins_h << s.hash_shift) ^ s.window[str + MIN_MATCH - 1]) & s.hash_mask;

        s.prev[str & s.w_mask] = s.head[s.ins_h];
        s.head[s.ins_h] = str;
        str++;
        s.insert--;
        if (s.lookahead + s.insert < MIN_MATCH) {
          break;
        }
      }
    }
    /* If the whole input has less than MIN_MATCH bytes, ins_h is garbage,
     * but this is not important since only literal bytes will be emitted.
     */

  } while (s.lookahead < MIN_LOOKAHEAD && s.strm.avail_in !== 0);

  /* If the WIN_INIT bytes after the end of the current data have never been
   * written, then zero those bytes in order to avoid memory check reports of
   * the use of uninitialized (or uninitialised as Julian writes) bytes by
   * the longest match routines.  Update the high water mark for the next
   * time through here.  WIN_INIT is set to MAX_MATCH since the longest match
   * routines allow scanning to strstart + MAX_MATCH, ignoring lookahead.
   */
//  if (s.high_water < s.window_size) {
//    var curr = s.strstart + s.lookahead;
//    var init = 0;
//
//    if (s.high_water < curr) {
//      /* Previous high water mark below current data -- zero WIN_INIT
//       * bytes or up to end of window, whichever is less.
//       */
//      init = s.window_size - curr;
//      if (init > WIN_INIT)
//        init = WIN_INIT;
//      zmemzero(s->window + curr, (unsigned)init);
//      s->high_water = curr + init;
//    }
//    else if (s->high_water < (ulg)curr + WIN_INIT) {
//      /* High water mark at or above current data, but below current data
//       * plus WIN_INIT -- zero out to current data plus WIN_INIT, or up
//       * to end of window, whichever is less.
//       */
//      init = (ulg)curr + WIN_INIT - s->high_water;
//      if (init > s->window_size - s->high_water)
//        init = s->window_size - s->high_water;
//      zmemzero(s->window + s->high_water, (unsigned)init);
//      s->high_water += init;
//    }
//  }
//
//  Assert((ulg)s->strstart <= s->window_size - MIN_LOOKAHEAD,
//    "not enough room for search");
}

/* ===========================================================================
 * Copy without compression as much as possible from the input stream, return
 * the current block state.
 * This function does not insert new strings in the dictionary since
 * uncompressible data is probably not useful. This function is used
 * only for the level=0 compression option.
 * NOTE: this function should be optimized to avoid extra copying from
 * window to pending_buf.
 */
function deflate_stored(s, flush) {
  /* Stored blocks are limited to 0xffff bytes, pending_buf is limited
   * to pending_buf_size, and each stored block has a 5 byte header:
   */
  var max_block_size = 0xffff;

  if (max_block_size > s.pending_buf_size - 5) {
    max_block_size = s.pending_buf_size - 5;
  }

  /* Copy as much as possible from input to output: */
  for (;;) {
    /* Fill the window as much as possible: */
    if (s.lookahead <= 1) {

      //Assert(s->strstart < s->w_size+MAX_DIST(s) ||
      //  s->block_start >= (long)s->w_size, "slide too late");
//      if (!(s.strstart < s.w_size + (s.w_size - MIN_LOOKAHEAD) ||
//        s.block_start >= s.w_size)) {
//        throw  new Error("slide too late");
//      }

      fill_window(s);
      if (s.lookahead === 0 && flush === Z_NO_FLUSH) {
        return BS_NEED_MORE;
      }

      if (s.lookahead === 0) {
        break;
      }
      /* flush the current block */
    }
    //Assert(s->block_start >= 0L, "block gone");
//    if (s.block_start < 0) throw new Error("block gone");

    s.strstart += s.lookahead;
    s.lookahead = 0;

    /* Emit a stored block if pending_buf will be full: */
    var max_start = s.block_start + max_block_size;

    if (s.strstart === 0 || s.strstart >= max_start) {
      /* strstart == 0 is possible when wraparound on 16-bit machine */
      s.lookahead = s.strstart - max_start;
      s.strstart = max_start;
      /*** FLUSH_BLOCK(s, 0); ***/
      flush_block_only(s, false);
      if (s.strm.avail_out === 0) {
        return BS_NEED_MORE;
      }
      /***/


    }
    /* Flush if we may have to slide, otherwise block_start may become
     * negative and the data will be gone:
     */
    if (s.strstart - s.block_start >= (s.w_size - MIN_LOOKAHEAD)) {
      /*** FLUSH_BLOCK(s, 0); ***/
      flush_block_only(s, false);
      if (s.strm.avail_out === 0) {
        return BS_NEED_MORE;
      }
      /***/
    }
  }

  s.insert = 0;

  if (flush === Z_FINISH) {
    /*** FLUSH_BLOCK(s, 1); ***/
    flush_block_only(s, true);
    if (s.strm.avail_out === 0) {
      return BS_FINISH_STARTED;
    }
    /***/
    return BS_FINISH_DONE;
  }

  if (s.strstart > s.block_start) {
    /*** FLUSH_BLOCK(s, 0); ***/
    flush_block_only(s, false);
    if (s.strm.avail_out === 0) {
      return BS_NEED_MORE;
    }
    /***/
  }

  return BS_NEED_MORE;
}

/* ===========================================================================
 * Compress as much as possible from the input stream, return the current
 * block state.
 * This function does not perform lazy evaluation of matches and inserts
 * new strings in the dictionary only for unmatched strings or for short
 * matches. It is used only for the fast compression options.
 */
function deflate_fast(s, flush) {
  var hash_head;        /* head of the hash chain */
  var bflush;           /* set if current block must be flushed */

  for (;;) {
    /* Make sure that we always have enough lookahead, except
     * at the end of the input file. We need MAX_MATCH bytes
     * for the next match, plus MIN_MATCH bytes to insert the
     * string following the next match.
     */
    if (s.lookahead < MIN_LOOKAHEAD) {
      fill_window(s);
      if (s.lookahead < MIN_LOOKAHEAD && flush === Z_NO_FLUSH) {
        return BS_NEED_MORE;
      }
      if (s.lookahead === 0) {
        break; /* flush the current block */
      }
    }

    /* Insert the string window[strstart .. strstart+2] in the
     * dictionary, and set hash_head to the head of the hash chain:
     */
    hash_head = 0/*NIL*/;
    if (s.lookahead >= MIN_MATCH) {
      /*** INSERT_STRING(s, s.strstart, hash_head); ***/
      s.ins_h = ((s.ins_h << s.hash_shift) ^ s.window[s.strstart + MIN_MATCH - 1]) & s.hash_mask;
      hash_head = s.prev[s.strstart & s.w_mask] = s.head[s.ins_h];
      s.head[s.ins_h] = s.strstart;
      /***/
    }

    /* Find the longest match, discarding those <= prev_length.
     * At this point we have always match_length < MIN_MATCH
     */
    if (hash_head !== 0/*NIL*/ && ((s.strstart - hash_head) <= (s.w_size - MIN_LOOKAHEAD))) {
      /* To simplify the code, we prevent matches with the string
       * of window index 0 (in particular we have to avoid a match
       * of the string with itself at the start of the input file).
       */
      s.match_length = longest_match(s, hash_head);
      /* longest_match() sets match_start */
    }
    if (s.match_length >= MIN_MATCH) {
      // check_match(s, s.strstart, s.match_start, s.match_length); // for debug only

      /*** _tr_tally_dist(s, s.strstart - s.match_start,
                     s.match_length - MIN_MATCH, bflush); ***/
      bflush = trees._tr_tally(s, s.strstart - s.match_start, s.match_length - MIN_MATCH);

      s.lookahead -= s.match_length;

      /* Insert new strings in the hash table only if the match length
       * is not too large. This saves time but degrades compression.
       */
      if (s.match_length <= s.max_lazy_match/*max_insert_length*/ && s.lookahead >= MIN_MATCH) {
        s.match_length--; /* string at strstart already in table */
        do {
          s.strstart++;
          /*** INSERT_STRING(s, s.strstart, hash_head); ***/
          s.ins_h = ((s.ins_h << s.hash_shift) ^ s.window[s.strstart + MIN_MATCH - 1]) & s.hash_mask;
          hash_head = s.prev[s.strstart & s.w_mask] = s.head[s.ins_h];
          s.head[s.ins_h] = s.strstart;
          /***/
          /* strstart never exceeds WSIZE-MAX_MATCH, so there are
           * always MIN_MATCH bytes ahead.
           */
        } while (--s.match_length !== 0);
        s.strstart++;
      } else
      {
        s.strstart += s.match_length;
        s.match_length = 0;
        s.ins_h = s.window[s.strstart];
        /* UPDATE_HASH(s, s.ins_h, s.window[s.strstart+1]); */
        s.ins_h = ((s.ins_h << s.hash_shift) ^ s.window[s.strstart + 1]) & s.hash_mask;

//#if MIN_MATCH != 3
//                Call UPDATE_HASH() MIN_MATCH-3 more times
//#endif
        /* If lookahead < MIN_MATCH, ins_h is garbage, but it does not
         * matter since it will be recomputed at next deflate call.
         */
      }
    } else {
      /* No match, output a literal byte */
      //Tracevv((stderr,"%c", s.window[s.strstart]));
      /*** _tr_tally_lit(s, s.window[s.strstart], bflush); ***/
      bflush = trees._tr_tally(s, 0, s.window[s.strstart]);

      s.lookahead--;
      s.strstart++;
    }
    if (bflush) {
      /*** FLUSH_BLOCK(s, 0); ***/
      flush_block_only(s, false);
      if (s.strm.avail_out === 0) {
        return BS_NEED_MORE;
      }
      /***/
    }
  }
  s.insert = ((s.strstart < (MIN_MATCH - 1)) ? s.strstart : MIN_MATCH - 1);
  if (flush === Z_FINISH) {
    /*** FLUSH_BLOCK(s, 1); ***/
    flush_block_only(s, true);
    if (s.strm.avail_out === 0) {
      return BS_FINISH_STARTED;
    }
    /***/
    return BS_FINISH_DONE;
  }
  if (s.last_lit) {
    /*** FLUSH_BLOCK(s, 0); ***/
    flush_block_only(s, false);
    if (s.strm.avail_out === 0) {
      return BS_NEED_MORE;
    }
    /***/
  }
  return BS_BLOCK_DONE;
}

/* ===========================================================================
 * Same as above, but achieves better compression. We use a lazy
 * evaluation for matches: a match is finally adopted only if there is
 * no better match at the next window position.
 */
function deflate_slow(s, flush) {
  var hash_head;          /* head of hash chain */
  var bflush;              /* set if current block must be flushed */

  var max_insert;

  /* Process the input block. */
  for (;;) {
    /* Make sure that we always have enough lookahead, except
     * at the end of the input file. We need MAX_MATCH bytes
     * for the next match, plus MIN_MATCH bytes to insert the
     * string following the next match.
     */
    if (s.lookahead < MIN_LOOKAHEAD) {
      fill_window(s);
      if (s.lookahead < MIN_LOOKAHEAD && flush === Z_NO_FLUSH) {
        return BS_NEED_MORE;
      }
      if (s.lookahead === 0) { break; } /* flush the current block */
    }

    /* Insert the string window[strstart .. strstart+2] in the
     * dictionary, and set hash_head to the head of the hash chain:
     */
    hash_head = 0/*NIL*/;
    if (s.lookahead >= MIN_MATCH) {
      /*** INSERT_STRING(s, s.strstart, hash_head); ***/
      s.ins_h = ((s.ins_h << s.hash_shift) ^ s.window[s.strstart + MIN_MATCH - 1]) & s.hash_mask;
      hash_head = s.prev[s.strstart & s.w_mask] = s.head[s.ins_h];
      s.head[s.ins_h] = s.strstart;
      /***/
    }

    /* Find the longest match, discarding those <= prev_length.
     */
    s.prev_length = s.match_length;
    s.prev_match = s.match_start;
    s.match_length = MIN_MATCH - 1;

    if (hash_head !== 0/*NIL*/ && s.prev_length < s.max_lazy_match &&
        s.strstart - hash_head <= (s.w_size - MIN_LOOKAHEAD)/*MAX_DIST(s)*/) {
      /* To simplify the code, we prevent matches with the string
       * of window index 0 (in particular we have to avoid a match
       * of the string with itself at the start of the input file).
       */
      s.match_length = longest_match(s, hash_head);
      /* longest_match() sets match_start */

      if (s.match_length <= 5 &&
         (s.strategy === Z_FILTERED || (s.match_length === MIN_MATCH && s.strstart - s.match_start > 4096/*TOO_FAR*/))) {

        /* If prev_match is also MIN_MATCH, match_start is garbage
         * but we will ignore the current match anyway.
         */
        s.match_length = MIN_MATCH - 1;
      }
    }
    /* If there was a match at the previous step and the current
     * match is not better, output the previous match:
     */
    if (s.prev_length >= MIN_MATCH && s.match_length <= s.prev_length) {
      max_insert = s.strstart + s.lookahead - MIN_MATCH;
      /* Do not insert strings in hash table beyond this. */

      //check_match(s, s.strstart-1, s.prev_match, s.prev_length);

      /***_tr_tally_dist(s, s.strstart - 1 - s.prev_match,
                     s.prev_length - MIN_MATCH, bflush);***/
      bflush = trees._tr_tally(s, s.strstart - 1 - s.prev_match, s.prev_length - MIN_MATCH);
      /* Insert in hash table all strings up to the end of the match.
       * strstart-1 and strstart are already inserted. If there is not
       * enough lookahead, the last two strings are not inserted in
       * the hash table.
       */
      s.lookahead -= s.prev_length - 1;
      s.prev_length -= 2;
      do {
        if (++s.strstart <= max_insert) {
          /*** INSERT_STRING(s, s.strstart, hash_head); ***/
          s.ins_h = ((s.ins_h << s.hash_shift) ^ s.window[s.strstart + MIN_MATCH - 1]) & s.hash_mask;
          hash_head = s.prev[s.strstart & s.w_mask] = s.head[s.ins_h];
          s.head[s.ins_h] = s.strstart;
          /***/
        }
      } while (--s.prev_length !== 0);
      s.match_available = 0;
      s.match_length = MIN_MATCH - 1;
      s.strstart++;

      if (bflush) {
        /*** FLUSH_BLOCK(s, 0); ***/
        flush_block_only(s, false);
        if (s.strm.avail_out === 0) {
          return BS_NEED_MORE;
        }
        /***/
      }

    } else if (s.match_available) {
      /* If there was no match at the previous position, output a
       * single literal. If there was a match but the current match
       * is longer, truncate the previous match to a single literal.
       */
      //Tracevv((stderr,"%c", s->window[s->strstart-1]));
      /*** _tr_tally_lit(s, s.window[s.strstart-1], bflush); ***/
      bflush = trees._tr_tally(s, 0, s.window[s.strstart - 1]);

      if (bflush) {
        /*** FLUSH_BLOCK_ONLY(s, 0) ***/
        flush_block_only(s, false);
        /***/
      }
      s.strstart++;
      s.lookahead--;
      if (s.strm.avail_out === 0) {
        return BS_NEED_MORE;
      }
    } else {
      /* There is no previous match to compare with, wait for
       * the next step to decide.
       */
      s.match_available = 1;
      s.strstart++;
      s.lookahead--;
    }
  }
  //Assert (flush != Z_NO_FLUSH, "no flush?");
  if (s.match_available) {
    //Tracevv((stderr,"%c", s->window[s->strstart-1]));
    /*** _tr_tally_lit(s, s.window[s.strstart-1], bflush); ***/
    bflush = trees._tr_tally(s, 0, s.window[s.strstart - 1]);

    s.match_available = 0;
  }
  s.insert = s.strstart < MIN_MATCH - 1 ? s.strstart : MIN_MATCH - 1;
  if (flush === Z_FINISH) {
    /*** FLUSH_BLOCK(s, 1); ***/
    flush_block_only(s, true);
    if (s.strm.avail_out === 0) {
      return BS_FINISH_STARTED;
    }
    /***/
    return BS_FINISH_DONE;
  }
  if (s.last_lit) {
    /*** FLUSH_BLOCK(s, 0); ***/
    flush_block_only(s, false);
    if (s.strm.avail_out === 0) {
      return BS_NEED_MORE;
    }
    /***/
  }

  return BS_BLOCK_DONE;
}


/* ===========================================================================
 * For Z_RLE, simply look for runs of bytes, generate matches only of distance
 * one.  Do not maintain a hash table.  (It will be regenerated if this run of
 * deflate switches away from Z_RLE.)
 */
function deflate_rle(s, flush) {
  var bflush;            /* set if current block must be flushed */
  var prev;              /* byte at distance one to match */
  var scan, strend;      /* scan goes up to strend for length of run */

  var _win = s.window;

  for (;;) {
    /* Make sure that we always have enough lookahead, except
     * at the end of the input file. We need MAX_MATCH bytes
     * for the longest run, plus one for the unrolled loop.
     */
    if (s.lookahead <= MAX_MATCH) {
      fill_window(s);
      if (s.lookahead <= MAX_MATCH && flush === Z_NO_FLUSH) {
        return BS_NEED_MORE;
      }
      if (s.lookahead === 0) { break; } /* flush the current block */
    }

    /* See how many times the previous byte repeats */
    s.match_length = 0;
    if (s.lookahead >= MIN_MATCH && s.strstart > 0) {
      scan = s.strstart - 1;
      prev = _win[scan];
      if (prev === _win[++scan] && prev === _win[++scan] && prev === _win[++scan]) {
        strend = s.strstart + MAX_MATCH;
        do {
          /*jshint noempty:false*/
        } while (prev === _win[++scan] && prev === _win[++scan] &&
                 prev === _win[++scan] && prev === _win[++scan] &&
                 prev === _win[++scan] && prev === _win[++scan] &&
                 prev === _win[++scan] && prev === _win[++scan] &&
                 scan < strend);
        s.match_length = MAX_MATCH - (strend - scan);
        if (s.match_length > s.lookahead) {
          s.match_length = s.lookahead;
        }
      }
      //Assert(scan <= s->window+(uInt)(s->window_size-1), "wild scan");
    }

    /* Emit match if have run of MIN_MATCH or longer, else emit literal */
    if (s.match_length >= MIN_MATCH) {
      //check_match(s, s.strstart, s.strstart - 1, s.match_length);

      /*** _tr_tally_dist(s, 1, s.match_length - MIN_MATCH, bflush); ***/
      bflush = trees._tr_tally(s, 1, s.match_length - MIN_MATCH);

      s.lookahead -= s.match_length;
      s.strstart += s.match_length;
      s.match_length = 0;
    } else {
      /* No match, output a literal byte */
      //Tracevv((stderr,"%c", s->window[s->strstart]));
      /*** _tr_tally_lit(s, s.window[s.strstart], bflush); ***/
      bflush = trees._tr_tally(s, 0, s.window[s.strstart]);

      s.lookahead--;
      s.strstart++;
    }
    if (bflush) {
      /*** FLUSH_BLOCK(s, 0); ***/
      flush_block_only(s, false);
      if (s.strm.avail_out === 0) {
        return BS_NEED_MORE;
      }
      /***/
    }
  }
  s.insert = 0;
  if (flush === Z_FINISH) {
    /*** FLUSH_BLOCK(s, 1); ***/
    flush_block_only(s, true);
    if (s.strm.avail_out === 0) {
      return BS_FINISH_STARTED;
    }
    /***/
    return BS_FINISH_DONE;
  }
  if (s.last_lit) {
    /*** FLUSH_BLOCK(s, 0); ***/
    flush_block_only(s, false);
    if (s.strm.avail_out === 0) {
      return BS_NEED_MORE;
    }
    /***/
  }
  return BS_BLOCK_DONE;
}

/* ===========================================================================
 * For Z_HUFFMAN_ONLY, do not look for matches.  Do not maintain a hash table.
 * (It will be regenerated if this run of deflate switches away from Huffman.)
 */
function deflate_huff(s, flush) {
  var bflush;             /* set if current block must be flushed */

  for (;;) {
    /* Make sure that we have a literal to write. */
    if (s.lookahead === 0) {
      fill_window(s);
      if (s.lookahead === 0) {
        if (flush === Z_NO_FLUSH) {
          return BS_NEED_MORE;
        }
        break;      /* flush the current block */
      }
    }

    /* Output a literal byte */
    s.match_length = 0;
    //Tracevv((stderr,"%c", s->window[s->strstart]));
    /*** _tr_tally_lit(s, s.window[s.strstart], bflush); ***/
    bflush = trees._tr_tally(s, 0, s.window[s.strstart]);
    s.lookahead--;
    s.strstart++;
    if (bflush) {
      /*** FLUSH_BLOCK(s, 0); ***/
      flush_block_only(s, false);
      if (s.strm.avail_out === 0) {
        return BS_NEED_MORE;
      }
      /***/
    }
  }
  s.insert = 0;
  if (flush === Z_FINISH) {
    /*** FLUSH_BLOCK(s, 1); ***/
    flush_block_only(s, true);
    if (s.strm.avail_out === 0) {
      return BS_FINISH_STARTED;
    }
    /***/
    return BS_FINISH_DONE;
  }
  if (s.last_lit) {
    /*** FLUSH_BLOCK(s, 0); ***/
    flush_block_only(s, false);
    if (s.strm.avail_out === 0) {
      return BS_NEED_MORE;
    }
    /***/
  }
  return BS_BLOCK_DONE;
}

/* Values for max_lazy_match, good_match and max_chain_length, depending on
 * the desired pack level (0..9). The values given below have been tuned to
 * exclude worst case performance for pathological files. Better values may be
 * found for specific files.
 */
function Config(good_length, max_lazy, nice_length, max_chain, func) {
  this.good_length = good_length;
  this.max_lazy = max_lazy;
  this.nice_length = nice_length;
  this.max_chain = max_chain;
  this.func = func;
}

var configuration_table;

configuration_table = [
  /*      good lazy nice chain */
  new Config(0, 0, 0, 0, deflate_stored),          /* 0 store only */
  new Config(4, 4, 8, 4, deflate_fast),            /* 1 max speed, no lazy matches */
  new Config(4, 5, 16, 8, deflate_fast),           /* 2 */
  new Config(4, 6, 32, 32, deflate_fast),          /* 3 */

  new Config(4, 4, 16, 16, deflate_slow),          /* 4 lazy matches */
  new Config(8, 16, 32, 32, deflate_slow),         /* 5 */
  new Config(8, 16, 128, 128, deflate_slow),       /* 6 */
  new Config(8, 32, 128, 256, deflate_slow),       /* 7 */
  new Config(32, 128, 258, 1024, deflate_slow),    /* 8 */
  new Config(32, 258, 258, 4096, deflate_slow)     /* 9 max compression */
];


/* ===========================================================================
 * Initialize the "longest match" routines for a new zlib stream
 */
function lm_init(s) {
  s.window_size = 2 * s.w_size;

  /*** CLEAR_HASH(s); ***/
  zero(s.head); // Fill with NIL (= 0);

  /* Set the default configuration parameters:
   */
  s.max_lazy_match = configuration_table[s.level].max_lazy;
  s.good_match = configuration_table[s.level].good_length;
  s.nice_match = configuration_table[s.level].nice_length;
  s.max_chain_length = configuration_table[s.level].max_chain;

  s.strstart = 0;
  s.block_start = 0;
  s.lookahead = 0;
  s.insert = 0;
  s.match_length = s.prev_length = MIN_MATCH - 1;
  s.match_available = 0;
  s.ins_h = 0;
}


function DeflateState() {
  this.strm = null;            /* pointer back to this zlib stream */
  this.status = 0;            /* as the name implies */
  this.pending_buf = null;      /* output still pending */
  this.pending_buf_size = 0;  /* size of pending_buf */
  this.pending_out = 0;       /* next pending byte to output to the stream */
  this.pending = 0;           /* nb of bytes in the pending buffer */
  this.wrap = 0;              /* bit 0 true for zlib, bit 1 true for gzip */
  this.gzhead = null;         /* gzip header information to write */
  this.gzindex = 0;           /* where in extra, name, or comment */
  this.method = Z_DEFLATED; /* can only be DEFLATED */
  this.last_flush = -1;   /* value of flush param for previous deflate call */

  this.w_size = 0;  /* LZ77 window size (32K by default) */
  this.w_bits = 0;  /* log2(w_size)  (8..16) */
  this.w_mask = 0;  /* w_size - 1 */

  this.window = null;
  /* Sliding window. Input bytes are read into the second half of the window,
   * and move to the first half later to keep a dictionary of at least wSize
   * bytes. With this organization, matches are limited to a distance of
   * wSize-MAX_MATCH bytes, but this ensures that IO is always
   * performed with a length multiple of the block size.
   */

  this.window_size = 0;
  /* Actual size of window: 2*wSize, except when the user input buffer
   * is directly used as sliding window.
   */

  this.prev = null;
  /* Link to older string with same hash index. To limit the size of this
   * array to 64K, this link is maintained only for the last 32K strings.
   * An index in this array is thus a window index modulo 32K.
   */

  this.head = null;   /* Heads of the hash chains or NIL. */

  this.ins_h = 0;       /* hash index of string to be inserted */
  this.hash_size = 0;   /* number of elements in hash table */
  this.hash_bits = 0;   /* log2(hash_size) */
  this.hash_mask = 0;   /* hash_size-1 */

  this.hash_shift = 0;
  /* Number of bits by which ins_h must be shifted at each input
   * step. It must be such that after MIN_MATCH steps, the oldest
   * byte no longer takes part in the hash key, that is:
   *   hash_shift * MIN_MATCH >= hash_bits
   */

  this.block_start = 0;
  /* Window position at the beginning of the current output block. Gets
   * negative when the window is moved backwards.
   */

  this.match_length = 0;      /* length of best match */
  this.prev_match = 0;        /* previous match */
  this.match_available = 0;   /* set if previous match exists */
  this.strstart = 0;          /* start of string to insert */
  this.match_start = 0;       /* start of matching string */
  this.lookahead = 0;         /* number of valid bytes ahead in window */

  this.prev_length = 0;
  /* Length of the best match at previous step. Matches not greater than this
   * are discarded. This is used in the lazy match evaluation.
   */

  this.max_chain_length = 0;
  /* To speed up deflation, hash chains are never searched beyond this
   * length.  A higher limit improves compression ratio but degrades the
   * speed.
   */

  this.max_lazy_match = 0;
  /* Attempt to find a better match only when the current match is strictly
   * smaller than this value. This mechanism is used only for compression
   * levels >= 4.
   */
  // That's alias to max_lazy_match, don't use directly
  //this.max_insert_length = 0;
  /* Insert new strings in the hash table only if the match length is not
   * greater than this length. This saves time but degrades compression.
   * max_insert_length is used only for compression levels <= 3.
   */

  this.level = 0;     /* compression level (1..9) */
  this.strategy = 0;  /* favor or force Huffman coding*/

  this.good_match = 0;
  /* Use a faster search when the previous match is longer than this */

  this.nice_match = 0; /* Stop searching when current match exceeds this */

              /* used by trees.c: */

  /* Didn't use ct_data typedef below to suppress compiler warning */

  // struct ct_data_s dyn_ltree[HEAP_SIZE];   /* literal and length tree */
  // struct ct_data_s dyn_dtree[2*D_CODES+1]; /* distance tree */
  // struct ct_data_s bl_tree[2*BL_CODES+1];  /* Huffman tree for bit lengths */

  // Use flat array of DOUBLE size, with interleaved fata,
  // because JS does not support effective
  this.dyn_ltree  = new utils.Buf16(HEAP_SIZE * 2);
  this.dyn_dtree  = new utils.Buf16((2 * D_CODES + 1) * 2);
  this.bl_tree    = new utils.Buf16((2 * BL_CODES + 1) * 2);
  zero(this.dyn_ltree);
  zero(this.dyn_dtree);
  zero(this.bl_tree);

  this.l_desc   = null;         /* desc. for literal tree */
  this.d_desc   = null;         /* desc. for distance tree */
  this.bl_desc  = null;         /* desc. for bit length tree */

  //ush bl_count[MAX_BITS+1];
  this.bl_count = new utils.Buf16(MAX_BITS + 1);
  /* number of codes at each bit length for an optimal tree */

  //int heap[2*L_CODES+1];      /* heap used to build the Huffman trees */
  this.heap = new utils.Buf16(2 * L_CODES + 1);  /* heap used to build the Huffman trees */
  zero(this.heap);

  this.heap_len = 0;               /* number of elements in the heap */
  this.heap_max = 0;               /* element of largest frequency */
  /* The sons of heap[n] are heap[2*n] and heap[2*n+1]. heap[0] is not used.
   * The same heap array is used to build all trees.
   */

  this.depth = new utils.Buf16(2 * L_CODES + 1); //uch depth[2*L_CODES+1];
  zero(this.depth);
  /* Depth of each subtree used as tie breaker for trees of equal frequency
   */

  this.l_buf = 0;          /* buffer index for literals or lengths */

  this.lit_bufsize = 0;
  /* Size of match buffer for literals/lengths.  There are 4 reasons for
   * limiting lit_bufsize to 64K:
   *   - frequencies can be kept in 16 bit counters
   *   - if compression is not successful for the first block, all input
   *     data is still in the window so we can still emit a stored block even
   *     when input comes from standard input.  (This can also be done for
   *     all blocks if lit_bufsize is not greater than 32K.)
   *   - if compression is not successful for a file smaller than 64K, we can
   *     even emit a stored file instead of a stored block (saving 5 bytes).
   *     This is applicable only for zip (not gzip or zlib).
   *   - creating new Huffman trees less frequently may not provide fast
   *     adaptation to changes in the input data statistics. (Take for
   *     example a binary file with poorly compressible code followed by
   *     a highly compressible string table.) Smaller buffer sizes give
   *     fast adaptation but have of course the overhead of transmitting
   *     trees more frequently.
   *   - I can't count above 4
   */

  this.last_lit = 0;      /* running index in l_buf */

  this.d_buf = 0;
  /* Buffer index for distances. To simplify the code, d_buf and l_buf have
   * the same number of elements. To use different lengths, an extra flag
   * array would be necessary.
   */

  this.opt_len = 0;       /* bit length of current block with optimal trees */
  this.static_len = 0;    /* bit length of current block with static trees */
  this.matches = 0;       /* number of string matches in current block */
  this.insert = 0;        /* bytes at end of window left to insert */


  this.bi_buf = 0;
  /* Output buffer. bits are inserted starting at the bottom (least
   * significant bits).
   */
  this.bi_valid = 0;
  /* Number of valid bits in bi_buf.  All bits above the last valid bit
   * are always zero.
   */

  // Used for window memory init. We safely ignore it for JS. That makes
  // sense only for pointers and memory check tools.
  //this.high_water = 0;
  /* High water mark offset in window for initialized bytes -- bytes above
   * this are set to zero in order to avoid memory check warnings when
   * longest match routines access bytes past the input.  This is then
   * updated to the new high water mark.
   */
}


function deflateResetKeep(strm) {
  var s;

  if (!strm || !strm.state) {
    return err(strm, Z_STREAM_ERROR);
  }

  strm.total_in = strm.total_out = 0;
  strm.data_type = Z_UNKNOWN;

  s = strm.state;
  s.pending = 0;
  s.pending_out = 0;

  if (s.wrap < 0) {
    s.wrap = -s.wrap;
    /* was made negative by deflate(..., Z_FINISH); */
  }
  s.status = (s.wrap ? INIT_STATE : BUSY_STATE);
  strm.adler = (s.wrap === 2) ?
    0  // crc32(0, Z_NULL, 0)
  :
    1; // adler32(0, Z_NULL, 0)
  s.last_flush = Z_NO_FLUSH;
  trees._tr_init(s);
  return Z_OK;
}


function deflateReset(strm) {
  var ret = deflateResetKeep(strm);
  if (ret === Z_OK) {
    lm_init(strm.state);
  }
  return ret;
}


function deflateSetHeader(strm, head) {
  if (!strm || !strm.state) { return Z_STREAM_ERROR; }
  if (strm.state.wrap !== 2) { return Z_STREAM_ERROR; }
  strm.state.gzhead = head;
  return Z_OK;
}


function deflateInit2(strm, level, method, windowBits, memLevel, strategy) {
  if (!strm) { // === Z_NULL
    return Z_STREAM_ERROR;
  }
  var wrap = 1;

  if (level === Z_DEFAULT_COMPRESSION) {
    level = 6;
  }

  if (windowBits < 0) { /* suppress zlib wrapper */
    wrap = 0;
    windowBits = -windowBits;
  }

  else if (windowBits > 15) {
    wrap = 2;           /* write gzip wrapper instead */
    windowBits -= 16;
  }


  if (memLevel < 1 || memLevel > MAX_MEM_LEVEL || method !== Z_DEFLATED ||
    windowBits < 8 || windowBits > 15 || level < 0 || level > 9 ||
    strategy < 0 || strategy > Z_FIXED) {
    return err(strm, Z_STREAM_ERROR);
  }


  if (windowBits === 8) {
    windowBits = 9;
  }
  /* until 256-byte window bug fixed */

  var s = new DeflateState();

  strm.state = s;
  s.strm = strm;

  s.wrap = wrap;
  s.gzhead = null;
  s.w_bits = windowBits;
  s.w_size = 1 << s.w_bits;
  s.w_mask = s.w_size - 1;

  s.hash_bits = memLevel + 7;
  s.hash_size = 1 << s.hash_bits;
  s.hash_mask = s.hash_size - 1;
  s.hash_shift = ~~((s.hash_bits + MIN_MATCH - 1) / MIN_MATCH);

  s.window = new utils.Buf8(s.w_size * 2);
  s.head = new utils.Buf16(s.hash_size);
  s.prev = new utils.Buf16(s.w_size);

  // Don't need mem init magic for JS.
  //s.high_water = 0;  /* nothing written to s->window yet */

  s.lit_bufsize = 1 << (memLevel + 6); /* 16K elements by default */

  s.pending_buf_size = s.lit_bufsize * 4;

  //overlay = (ushf *) ZALLOC(strm, s->lit_bufsize, sizeof(ush)+2);
  //s->pending_buf = (uchf *) overlay;
  s.pending_buf = new utils.Buf8(s.pending_buf_size);

  // It is offset from `s.pending_buf` (size is `s.lit_bufsize * 2`)
  //s->d_buf = overlay + s->lit_bufsize/sizeof(ush);
  s.d_buf = 1 * s.lit_bufsize;

  //s->l_buf = s->pending_buf + (1+sizeof(ush))*s->lit_bufsize;
  s.l_buf = (1 + 2) * s.lit_bufsize;

  s.level = level;
  s.strategy = strategy;
  s.method = method;

  return deflateReset(strm);
}

function deflateInit(strm, level) {
  return deflateInit2(strm, level, Z_DEFLATED, MAX_WBITS, DEF_MEM_LEVEL, Z_DEFAULT_STRATEGY);
}


function deflate(strm, flush) {
  var old_flush, s;
  var beg, val; // for gzip header write only

  if (!strm || !strm.state ||
    flush > Z_BLOCK || flush < 0) {
    return strm ? err(strm, Z_STREAM_ERROR) : Z_STREAM_ERROR;
  }

  s = strm.state;

  if (!strm.output ||
      (!strm.input && strm.avail_in !== 0) ||
      (s.status === FINISH_STATE && flush !== Z_FINISH)) {
    return err(strm, (strm.avail_out === 0) ? Z_BUF_ERROR : Z_STREAM_ERROR);
  }

  s.strm = strm; /* just in case */
  old_flush = s.last_flush;
  s.last_flush = flush;

  /* Write the header */
  if (s.status === INIT_STATE) {

    if (s.wrap === 2) { // GZIP header
      strm.adler = 0;  //crc32(0L, Z_NULL, 0);
      put_byte(s, 31);
      put_byte(s, 139);
      put_byte(s, 8);
      if (!s.gzhead) { // s->gzhead == Z_NULL
        put_byte(s, 0);
        put_byte(s, 0);
        put_byte(s, 0);
        put_byte(s, 0);
        put_byte(s, 0);
        put_byte(s, s.level === 9 ? 2 :
                    (s.strategy >= Z_HUFFMAN_ONLY || s.level < 2 ?
                     4 : 0));
        put_byte(s, OS_CODE);
        s.status = BUSY_STATE;
      }
      else {
        put_byte(s, (s.gzhead.text ? 1 : 0) +
                    (s.gzhead.hcrc ? 2 : 0) +
                    (!s.gzhead.extra ? 0 : 4) +
                    (!s.gzhead.name ? 0 : 8) +
                    (!s.gzhead.comment ? 0 : 16)
        );
        put_byte(s, s.gzhead.time & 0xff);
        put_byte(s, (s.gzhead.time >> 8) & 0xff);
        put_byte(s, (s.gzhead.time >> 16) & 0xff);
        put_byte(s, (s.gzhead.time >> 24) & 0xff);
        put_byte(s, s.level === 9 ? 2 :
                    (s.strategy >= Z_HUFFMAN_ONLY || s.level < 2 ?
                     4 : 0));
        put_byte(s, s.gzhead.os & 0xff);
        if (s.gzhead.extra && s.gzhead.extra.length) {
          put_byte(s, s.gzhead.extra.length & 0xff);
          put_byte(s, (s.gzhead.extra.length >> 8) & 0xff);
        }
        if (s.gzhead.hcrc) {
          strm.adler = crc32(strm.adler, s.pending_buf, s.pending, 0);
        }
        s.gzindex = 0;
        s.status = EXTRA_STATE;
      }
    }
    else // DEFLATE header
    {
      var header = (Z_DEFLATED + ((s.w_bits - 8) << 4)) << 8;
      var level_flags = -1;

      if (s.strategy >= Z_HUFFMAN_ONLY || s.level < 2) {
        level_flags = 0;
      } else if (s.level < 6) {
        level_flags = 1;
      } else if (s.level === 6) {
        level_flags = 2;
      } else {
        level_flags = 3;
      }
      header |= (level_flags << 6);
      if (s.strstart !== 0) { header |= PRESET_DICT; }
      header += 31 - (header % 31);

      s.status = BUSY_STATE;
      putShortMSB(s, header);

      /* Save the adler32 of the preset dictionary: */
      if (s.strstart !== 0) {
        putShortMSB(s, strm.adler >>> 16);
        putShortMSB(s, strm.adler & 0xffff);
      }
      strm.adler = 1; // adler32(0L, Z_NULL, 0);
    }
  }

//#ifdef GZIP
  if (s.status === EXTRA_STATE) {
    if (s.gzhead.extra/* != Z_NULL*/) {
      beg = s.pending;  /* start of bytes to update crc */

      while (s.gzindex < (s.gzhead.extra.length & 0xffff)) {
        if (s.pending === s.pending_buf_size) {
          if (s.gzhead.hcrc && s.pending > beg) {
            strm.adler = crc32(strm.adler, s.pending_buf, s.pending - beg, beg);
          }
          flush_pending(strm);
          beg = s.pending;
          if (s.pending === s.pending_buf_size) {
            break;
          }
        }
        put_byte(s, s.gzhead.extra[s.gzindex] & 0xff);
        s.gzindex++;
      }
      if (s.gzhead.hcrc && s.pending > beg) {
        strm.adler = crc32(strm.adler, s.pending_buf, s.pending - beg, beg);
      }
      if (s.gzindex === s.gzhead.extra.length) {
        s.gzindex = 0;
        s.status = NAME_STATE;
      }
    }
    else {
      s.status = NAME_STATE;
    }
  }
  if (s.status === NAME_STATE) {
    if (s.gzhead.name/* != Z_NULL*/) {
      beg = s.pending;  /* start of bytes to update crc */
      //int val;

      do {
        if (s.pending === s.pending_buf_size) {
          if (s.gzhead.hcrc && s.pending > beg) {
            strm.adler = crc32(strm.adler, s.pending_buf, s.pending - beg, beg);
          }
          flush_pending(strm);
          beg = s.pending;
          if (s.pending === s.pending_buf_size) {
            val = 1;
            break;
          }
        }
        // JS specific: little magic to add zero terminator to end of string
        if (s.gzindex < s.gzhead.name.length) {
          val = s.gzhead.name.charCodeAt(s.gzindex++) & 0xff;
        } else {
          val = 0;
        }
        put_byte(s, val);
      } while (val !== 0);

      if (s.gzhead.hcrc && s.pending > beg) {
        strm.adler = crc32(strm.adler, s.pending_buf, s.pending - beg, beg);
      }
      if (val === 0) {
        s.gzindex = 0;
        s.status = COMMENT_STATE;
      }
    }
    else {
      s.status = COMMENT_STATE;
    }
  }
  if (s.status === COMMENT_STATE) {
    if (s.gzhead.comment/* != Z_NULL*/) {
      beg = s.pending;  /* start of bytes to update crc */
      //int val;

      do {
        if (s.pending === s.pending_buf_size) {
          if (s.gzhead.hcrc && s.pending > beg) {
            strm.adler = crc32(strm.adler, s.pending_buf, s.pending - beg, beg);
          }
          flush_pending(strm);
          beg = s.pending;
          if (s.pending === s.pending_buf_size) {
            val = 1;
            break;
          }
        }
        // JS specific: little magic to add zero terminator to end of string
        if (s.gzindex < s.gzhead.comment.length) {
          val = s.gzhead.comment.charCodeAt(s.gzindex++) & 0xff;
        } else {
          val = 0;
        }
        put_byte(s, val);
      } while (val !== 0);

      if (s.gzhead.hcrc && s.pending > beg) {
        strm.adler = crc32(strm.adler, s.pending_buf, s.pending - beg, beg);
      }
      if (val === 0) {
        s.status = HCRC_STATE;
      }
    }
    else {
      s.status = HCRC_STATE;
    }
  }
  if (s.status === HCRC_STATE) {
    if (s.gzhead.hcrc) {
      if (s.pending + 2 > s.pending_buf_size) {
        flush_pending(strm);
      }
      if (s.pending + 2 <= s.pending_buf_size) {
        put_byte(s, strm.adler & 0xff);
        put_byte(s, (strm.adler >> 8) & 0xff);
        strm.adler = 0; //crc32(0L, Z_NULL, 0);
        s.status = BUSY_STATE;
      }
    }
    else {
      s.status = BUSY_STATE;
    }
  }
//#endif

  /* Flush as much pending output as possible */
  if (s.pending !== 0) {
    flush_pending(strm);
    if (strm.avail_out === 0) {
      /* Since avail_out is 0, deflate will be called again with
       * more output space, but possibly with both pending and
       * avail_in equal to zero. There won't be anything to do,
       * but this is not an error situation so make sure we
       * return OK instead of BUF_ERROR at next call of deflate:
       */
      s.last_flush = -1;
      return Z_OK;
    }

    /* Make sure there is something to do and avoid duplicate consecutive
     * flushes. For repeated and useless calls with Z_FINISH, we keep
     * returning Z_STREAM_END instead of Z_BUF_ERROR.
     */
  } else if (strm.avail_in === 0 && rank(flush) <= rank(old_flush) &&
    flush !== Z_FINISH) {
    return err(strm, Z_BUF_ERROR);
  }

  /* User must not provide more input after the first FINISH: */
  if (s.status === FINISH_STATE && strm.avail_in !== 0) {
    return err(strm, Z_BUF_ERROR);
  }

  /* Start a new block or continue the current one.
   */
  if (strm.avail_in !== 0 || s.lookahead !== 0 ||
    (flush !== Z_NO_FLUSH && s.status !== FINISH_STATE)) {
    var bstate = (s.strategy === Z_HUFFMAN_ONLY) ? deflate_huff(s, flush) :
      (s.strategy === Z_RLE ? deflate_rle(s, flush) :
        configuration_table[s.level].func(s, flush));

    if (bstate === BS_FINISH_STARTED || bstate === BS_FINISH_DONE) {
      s.status = FINISH_STATE;
    }
    if (bstate === BS_NEED_MORE || bstate === BS_FINISH_STARTED) {
      if (strm.avail_out === 0) {
        s.last_flush = -1;
        /* avoid BUF_ERROR next call, see above */
      }
      return Z_OK;
      /* If flush != Z_NO_FLUSH && avail_out == 0, the next call
       * of deflate should use the same flush parameter to make sure
       * that the flush is complete. So we don't have to output an
       * empty block here, this will be done at next call. This also
       * ensures that for a very small output buffer, we emit at most
       * one empty block.
       */
    }
    if (bstate === BS_BLOCK_DONE) {
      if (flush === Z_PARTIAL_FLUSH) {
        trees._tr_align(s);
      }
      else if (flush !== Z_BLOCK) { /* FULL_FLUSH or SYNC_FLUSH */

        trees._tr_stored_block(s, 0, 0, false);
        /* For a full flush, this empty block will be recognized
         * as a special marker by inflate_sync().
         */
        if (flush === Z_FULL_FLUSH) {
          /*** CLEAR_HASH(s); ***/             /* forget history */
          zero(s.head); // Fill with NIL (= 0);

          if (s.lookahead === 0) {
            s.strstart = 0;
            s.block_start = 0;
            s.insert = 0;
          }
        }
      }
      flush_pending(strm);
      if (strm.avail_out === 0) {
        s.last_flush = -1; /* avoid BUF_ERROR at next call, see above */
        return Z_OK;
      }
    }
  }
  //Assert(strm->avail_out > 0, "bug2");
  //if (strm.avail_out <= 0) { throw new Error("bug2");}

  if (flush !== Z_FINISH) { return Z_OK; }
  if (s.wrap <= 0) { return Z_STREAM_END; }

  /* Write the trailer */
  if (s.wrap === 2) {
    put_byte(s, strm.adler & 0xff);
    put_byte(s, (strm.adler >> 8) & 0xff);
    put_byte(s, (strm.adler >> 16) & 0xff);
    put_byte(s, (strm.adler >> 24) & 0xff);
    put_byte(s, strm.total_in & 0xff);
    put_byte(s, (strm.total_in >> 8) & 0xff);
    put_byte(s, (strm.total_in >> 16) & 0xff);
    put_byte(s, (strm.total_in >> 24) & 0xff);
  }
  else
  {
    putShortMSB(s, strm.adler >>> 16);
    putShortMSB(s, strm.adler & 0xffff);
  }

  flush_pending(strm);
  /* If avail_out is zero, the application will call deflate again
   * to flush the rest.
   */
  if (s.wrap > 0) { s.wrap = -s.wrap; }
  /* write the trailer only once! */
  return s.pending !== 0 ? Z_OK : Z_STREAM_END;
}

function deflateEnd(strm) {
  var status;

  if (!strm/*== Z_NULL*/ || !strm.state/*== Z_NULL*/) {
    return Z_STREAM_ERROR;
  }

  status = strm.state.status;
  if (status !== INIT_STATE &&
    status !== EXTRA_STATE &&
    status !== NAME_STATE &&
    status !== COMMENT_STATE &&
    status !== HCRC_STATE &&
    status !== BUSY_STATE &&
    status !== FINISH_STATE
  ) {
    return err(strm, Z_STREAM_ERROR);
  }

  strm.state = null;

  return status === BUSY_STATE ? err(strm, Z_DATA_ERROR) : Z_OK;
}


/* =========================================================================
 * Initializes the compression dictionary from the given byte
 * sequence without producing any compressed output.
 */
function deflateSetDictionary(strm, dictionary) {
  var dictLength = dictionary.length;

  var s;
  var str, n;
  var wrap;
  var avail;
  var next;
  var input;
  var tmpDict;

  if (!strm/*== Z_NULL*/ || !strm.state/*== Z_NULL*/) {
    return Z_STREAM_ERROR;
  }

  s = strm.state;
  wrap = s.wrap;

  if (wrap === 2 || (wrap === 1 && s.status !== INIT_STATE) || s.lookahead) {
    return Z_STREAM_ERROR;
  }

  /* when using zlib wrappers, compute Adler-32 for provided dictionary */
  if (wrap === 1) {
    /* adler32(strm->adler, dictionary, dictLength); */
    strm.adler = adler32(strm.adler, dictionary, dictLength, 0);
  }

  s.wrap = 0;   /* avoid computing Adler-32 in read_buf */

  /* if dictionary would fill window, just replace the history */
  if (dictLength >= s.w_size) {
    if (wrap === 0) {            /* already empty otherwise */
      /*** CLEAR_HASH(s); ***/
      zero(s.head); // Fill with NIL (= 0);
      s.strstart = 0;
      s.block_start = 0;
      s.insert = 0;
    }
    /* use the tail */
    // dictionary = dictionary.slice(dictLength - s.w_size);
    tmpDict = new utils.Buf8(s.w_size);
    utils.arraySet(tmpDict, dictionary, dictLength - s.w_size, s.w_size, 0);
    dictionary = tmpDict;
    dictLength = s.w_size;
  }
  /* insert dictionary into window and hash */
  avail = strm.avail_in;
  next = strm.next_in;
  input = strm.input;
  strm.avail_in = dictLength;
  strm.next_in = 0;
  strm.input = dictionary;
  fill_window(s);
  while (s.lookahead >= MIN_MATCH) {
    str = s.strstart;
    n = s.lookahead - (MIN_MATCH - 1);
    do {
      /* UPDATE_HASH(s, s->ins_h, s->window[str + MIN_MATCH-1]); */
      s.ins_h = ((s.ins_h << s.hash_shift) ^ s.window[str + MIN_MATCH - 1]) & s.hash_mask;

      s.prev[str & s.w_mask] = s.head[s.ins_h];

      s.head[s.ins_h] = str;
      str++;
    } while (--n);
    s.strstart = str;
    s.lookahead = MIN_MATCH - 1;
    fill_window(s);
  }
  s.strstart += s.lookahead;
  s.block_start = s.strstart;
  s.insert = s.lookahead;
  s.lookahead = 0;
  s.match_length = s.prev_length = MIN_MATCH - 1;
  s.match_available = 0;
  strm.next_in = next;
  strm.input = input;
  strm.avail_in = avail;
  s.wrap = wrap;
  return Z_OK;
}


exports.deflateInit = deflateInit;
exports.deflateInit2 = deflateInit2;
exports.deflateReset = deflateReset;
exports.deflateResetKeep = deflateResetKeep;
exports.deflateSetHeader = deflateSetHeader;
exports.deflate = deflate;
exports.deflateEnd = deflateEnd;
exports.deflateSetDictionary = deflateSetDictionary;
exports.deflateInfo = 'pako deflate (from Nodeca project)';

/* Not implemented
exports.deflateBound = deflateBound;
exports.deflateCopy = deflateCopy;
exports.deflateParams = deflateParams;
exports.deflatePending = deflatePending;
exports.deflatePrime = deflatePrime;
exports.deflateTune = deflateTune;
*/

},{"../utils/common":1,"./adler32":3,"./crc32":4,"./messages":6,"./trees":7}],6:[function(require,module,exports){
'use strict';

// (C) 1995-2013 Jean-loup Gailly and Mark Adler
// (C) 2014-2017 Vitaly Puzrin and Andrey Tupitsin
//
// This software is provided 'as-is', without any express or implied
// warranty. In no event will the authors be held liable for any damages
// arising from the use of this software.
//
// Permission is granted to anyone to use this software for any purpose,
// including commercial applications, and to alter it and redistribute it
// freely, subject to the following restrictions:
//
// 1. The origin of this software must not be misrepresented; you must not
//   claim that you wrote the original software. If you use this software
//   in a product, an acknowledgment in the product documentation would be
//   appreciated but is not required.
// 2. Altered source versions must be plainly marked as such, and must not be
//   misrepresented as being the original software.
// 3. This notice may not be removed or altered from any source distribution.

module.exports = {
  2:      'need dictionary',     /* Z_NEED_DICT       2  */
  1:      'stream end',          /* Z_STREAM_END      1  */
  0:      '',                    /* Z_OK              0  */
  '-1':   'file error',          /* Z_ERRNO         (-1) */
  '-2':   'stream error',        /* Z_STREAM_ERROR  (-2) */
  '-3':   'data error',          /* Z_DATA_ERROR    (-3) */
  '-4':   'insufficient memory', /* Z_MEM_ERROR     (-4) */
  '-5':   'buffer error',        /* Z_BUF_ERROR     (-5) */
  '-6':   'incompatible version' /* Z_VERSION_ERROR (-6) */
};

},{}],7:[function(require,module,exports){
'use strict';

// (C) 1995-2013 Jean-loup Gailly and Mark Adler
// (C) 2014-2017 Vitaly Puzrin and Andrey Tupitsin
//
// This software is provided 'as-is', without any express or implied
// warranty. In no event will the authors be held liable for any damages
// arising from the use of this software.
//
// Permission is granted to anyone to use this software for any purpose,
// including commercial applications, and to alter it and redistribute it
// freely, subject to the following restrictions:
//
// 1. The origin of this software must not be misrepresented; you must not
//   claim that you wrote the original software. If you use this software
//   in a product, an acknowledgment in the product documentation would be
//   appreciated but is not required.
// 2. Altered source versions must be plainly marked as such, and must not be
//   misrepresented as being the original software.
// 3. This notice may not be removed or altered from any source distribution.

/* eslint-disable space-unary-ops */

var utils = require('../utils/common');

/* Public constants ==========================================================*/
/* ===========================================================================*/


//var Z_FILTERED          = 1;
//var Z_HUFFMAN_ONLY      = 2;
//var Z_RLE               = 3;
var Z_FIXED               = 4;
//var Z_DEFAULT_STRATEGY  = 0;

/* Possible values of the data_type field (though see inflate()) */
var Z_BINARY              = 0;
var Z_TEXT                = 1;
//var Z_ASCII             = 1; // = Z_TEXT
var Z_UNKNOWN             = 2;

/*============================================================================*/


function zero(buf) { var len = buf.length; while (--len >= 0) { buf[len] = 0; } }

// From zutil.h

var STORED_BLOCK = 0;
var STATIC_TREES = 1;
var DYN_TREES    = 2;
/* The three kinds of block type */

var MIN_MATCH    = 3;
var MAX_MATCH    = 258;
/* The minimum and maximum match lengths */

// From deflate.h
/* ===========================================================================
 * Internal compression state.
 */

var LENGTH_CODES  = 29;
/* number of length codes, not counting the special END_BLOCK code */

var LITERALS      = 256;
/* number of literal bytes 0..255 */

var L_CODES       = LITERALS + 1 + LENGTH_CODES;
/* number of Literal or Length codes, including the END_BLOCK code */

var D_CODES       = 30;
/* number of distance codes */

var BL_CODES      = 19;
/* number of codes used to transfer the bit lengths */

var HEAP_SIZE     = 2 * L_CODES + 1;
/* maximum heap size */

var MAX_BITS      = 15;
/* All codes must not exceed MAX_BITS bits */

var Buf_size      = 16;
/* size of bit buffer in bi_buf */


/* ===========================================================================
 * Constants
 */

var MAX_BL_BITS = 7;
/* Bit length codes must not exceed MAX_BL_BITS bits */

var END_BLOCK   = 256;
/* end of block literal code */

var REP_3_6     = 16;
/* repeat previous bit length 3-6 times (2 bits of repeat count) */

var REPZ_3_10   = 17;
/* repeat a zero length 3-10 times  (3 bits of repeat count) */

var REPZ_11_138 = 18;
/* repeat a zero length 11-138 times  (7 bits of repeat count) */

/* eslint-disable comma-spacing,array-bracket-spacing */
var extra_lbits =   /* extra bits for each length code */
  [0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0];

var extra_dbits =   /* extra bits for each distance code */
  [0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13];

var extra_blbits =  /* extra bits for each bit length code */
  [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7];

var bl_order =
  [16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15];
/* eslint-enable comma-spacing,array-bracket-spacing */

/* The lengths of the bit length codes are sent in order of decreasing
 * probability, to avoid transmitting the lengths for unused bit length codes.
 */

/* ===========================================================================
 * Local data. These are initialized only once.
 */

// We pre-fill arrays with 0 to avoid uninitialized gaps

var DIST_CODE_LEN = 512; /* see definition of array dist_code below */

// !!!! Use flat array instead of structure, Freq = i*2, Len = i*2+1
var static_ltree  = new Array((L_CODES + 2) * 2);
zero(static_ltree);
/* The static literal tree. Since the bit lengths are imposed, there is no
 * need for the L_CODES extra codes used during heap construction. However
 * The codes 286 and 287 are needed to build a canonical tree (see _tr_init
 * below).
 */

var static_dtree  = new Array(D_CODES * 2);
zero(static_dtree);
/* The static distance tree. (Actually a trivial tree since all codes use
 * 5 bits.)
 */

var _dist_code    = new Array(DIST_CODE_LEN);
zero(_dist_code);
/* Distance codes. The first 256 values correspond to the distances
 * 3 .. 258, the last 256 values correspond to the top 8 bits of
 * the 15 bit distances.
 */

var _length_code  = new Array(MAX_MATCH - MIN_MATCH + 1);
zero(_length_code);
/* length code for each normalized match length (0 == MIN_MATCH) */

var base_length   = new Array(LENGTH_CODES);
zero(base_length);
/* First normalized length for each code (0 = MIN_MATCH) */

var base_dist     = new Array(D_CODES);
zero(base_dist);
/* First normalized distance for each code (0 = distance of 1) */


function StaticTreeDesc(static_tree, extra_bits, extra_base, elems, max_length) {

  this.static_tree  = static_tree;  /* static tree or NULL */
  this.extra_bits   = extra_bits;   /* extra bits for each code or NULL */
  this.extra_base   = extra_base;   /* base index for extra_bits */
  this.elems        = elems;        /* max number of elements in the tree */
  this.max_length   = max_length;   /* max bit length for the codes */

  // show if `static_tree` has data or dummy - needed for monomorphic objects
  this.has_stree    = static_tree && static_tree.length;
}


var static_l_desc;
var static_d_desc;
var static_bl_desc;


function TreeDesc(dyn_tree, stat_desc) {
  this.dyn_tree = dyn_tree;     /* the dynamic tree */
  this.max_code = 0;            /* largest code with non zero frequency */
  this.stat_desc = stat_desc;   /* the corresponding static tree */
}



function d_code(dist) {
  return dist < 256 ? _dist_code[dist] : _dist_code[256 + (dist >>> 7)];
}


/* ===========================================================================
 * Output a short LSB first on the stream.
 * IN assertion: there is enough room in pendingBuf.
 */
function put_short(s, w) {
//    put_byte(s, (uch)((w) & 0xff));
//    put_byte(s, (uch)((ush)(w) >> 8));
  s.pending_buf[s.pending++] = (w) & 0xff;
  s.pending_buf[s.pending++] = (w >>> 8) & 0xff;
}


/* ===========================================================================
 * Send a value on a given number of bits.
 * IN assertion: length <= 16 and value fits in length bits.
 */
function send_bits(s, value, length) {
  if (s.bi_valid > (Buf_size - length)) {
    s.bi_buf |= (value << s.bi_valid) & 0xffff;
    put_short(s, s.bi_buf);
    s.bi_buf = value >> (Buf_size - s.bi_valid);
    s.bi_valid += length - Buf_size;
  } else {
    s.bi_buf |= (value << s.bi_valid) & 0xffff;
    s.bi_valid += length;
  }
}


function send_code(s, c, tree) {
  send_bits(s, tree[c * 2]/*.Code*/, tree[c * 2 + 1]/*.Len*/);
}


/* ===========================================================================
 * Reverse the first len bits of a code, using straightforward code (a faster
 * method would use a table)
 * IN assertion: 1 <= len <= 15
 */
function bi_reverse(code, len) {
  var res = 0;
  do {
    res |= code & 1;
    code >>>= 1;
    res <<= 1;
  } while (--len > 0);
  return res >>> 1;
}


/* ===========================================================================
 * Flush the bit buffer, keeping at most 7 bits in it.
 */
function bi_flush(s) {
  if (s.bi_valid === 16) {
    put_short(s, s.bi_buf);
    s.bi_buf = 0;
    s.bi_valid = 0;

  } else if (s.bi_valid >= 8) {
    s.pending_buf[s.pending++] = s.bi_buf & 0xff;
    s.bi_buf >>= 8;
    s.bi_valid -= 8;
  }
}


/* ===========================================================================
 * Compute the optimal bit lengths for a tree and update the total bit length
 * for the current block.
 * IN assertion: the fields freq and dad are set, heap[heap_max] and
 *    above are the tree nodes sorted by increasing frequency.
 * OUT assertions: the field len is set to the optimal bit length, the
 *     array bl_count contains the frequencies for each bit length.
 *     The length opt_len is updated; static_len is also updated if stree is
 *     not null.
 */
function gen_bitlen(s, desc)
//    deflate_state *s;
//    tree_desc *desc;    /* the tree descriptor */
{
  var tree            = desc.dyn_tree;
  var max_code        = desc.max_code;
  var stree           = desc.stat_desc.static_tree;
  var has_stree       = desc.stat_desc.has_stree;
  var extra           = desc.stat_desc.extra_bits;
  var base            = desc.stat_desc.extra_base;
  var max_length      = desc.stat_desc.max_length;
  var h;              /* heap index */
  var n, m;           /* iterate over the tree elements */
  var bits;           /* bit length */
  var xbits;          /* extra bits */
  var f;              /* frequency */
  var overflow = 0;   /* number of elements with bit length too large */

  for (bits = 0; bits <= MAX_BITS; bits++) {
    s.bl_count[bits] = 0;
  }

  /* In a first pass, compute the optimal bit lengths (which may
   * overflow in the case of the bit length tree).
   */
  tree[s.heap[s.heap_max] * 2 + 1]/*.Len*/ = 0; /* root of the heap */

  for (h = s.heap_max + 1; h < HEAP_SIZE; h++) {
    n = s.heap[h];
    bits = tree[tree[n * 2 + 1]/*.Dad*/ * 2 + 1]/*.Len*/ + 1;
    if (bits > max_length) {
      bits = max_length;
      overflow++;
    }
    tree[n * 2 + 1]/*.Len*/ = bits;
    /* We overwrite tree[n].Dad which is no longer needed */

    if (n > max_code) { continue; } /* not a leaf node */

    s.bl_count[bits]++;
    xbits = 0;
    if (n >= base) {
      xbits = extra[n - base];
    }
    f = tree[n * 2]/*.Freq*/;
    s.opt_len += f * (bits + xbits);
    if (has_stree) {
      s.static_len += f * (stree[n * 2 + 1]/*.Len*/ + xbits);
    }
  }
  if (overflow === 0) { return; }

  // Trace((stderr,"\nbit length overflow\n"));
  /* This happens for example on obj2 and pic of the Calgary corpus */

  /* Find the first bit length which could increase: */
  do {
    bits = max_length - 1;
    while (s.bl_count[bits] === 0) { bits--; }
    s.bl_count[bits]--;      /* move one leaf down the tree */
    s.bl_count[bits + 1] += 2; /* move one overflow item as its brother */
    s.bl_count[max_length]--;
    /* The brother of the overflow item also moves one step up,
     * but this does not affect bl_count[max_length]
     */
    overflow -= 2;
  } while (overflow > 0);

  /* Now recompute all bit lengths, scanning in increasing frequency.
   * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all
   * lengths instead of fixing only the wrong ones. This idea is taken
   * from 'ar' written by Haruhiko Okumura.)
   */
  for (bits = max_length; bits !== 0; bits--) {
    n = s.bl_count[bits];
    while (n !== 0) {
      m = s.heap[--h];
      if (m > max_code) { continue; }
      if (tree[m * 2 + 1]/*.Len*/ !== bits) {
        // Trace((stderr,"code %d bits %d->%d\n", m, tree[m].Len, bits));
        s.opt_len += (bits - tree[m * 2 + 1]/*.Len*/) * tree[m * 2]/*.Freq*/;
        tree[m * 2 + 1]/*.Len*/ = bits;
      }
      n--;
    }
  }
}


/* ===========================================================================
 * Generate the codes for a given tree and bit counts (which need not be
 * optimal).
 * IN assertion: the array bl_count contains the bit length statistics for
 * the given tree and the field len is set for all tree elements.
 * OUT assertion: the field code is set for all tree elements of non
 *     zero code length.
 */
function gen_codes(tree, max_code, bl_count)
//    ct_data *tree;             /* the tree to decorate */
//    int max_code;              /* largest code with non zero frequency */
//    ushf *bl_count;            /* number of codes at each bit length */
{
  var next_code = new Array(MAX_BITS + 1); /* next code value for each bit length */
  var code = 0;              /* running code value */
  var bits;                  /* bit index */
  var n;                     /* code index */

  /* The distribution counts are first used to generate the code values
   * without bit reversal.
   */
  for (bits = 1; bits <= MAX_BITS; bits++) {
    next_code[bits] = code = (code + bl_count[bits - 1]) << 1;
  }
  /* Check that the bit counts in bl_count are consistent. The last code
   * must be all ones.
   */
  //Assert (code + bl_count[MAX_BITS]-1 == (1<<MAX_BITS)-1,
  //        "inconsistent bit counts");
  //Tracev((stderr,"\ngen_codes: max_code %d ", max_code));

  for (n = 0;  n <= max_code; n++) {
    var len = tree[n * 2 + 1]/*.Len*/;
    if (len === 0) { continue; }
    /* Now reverse the bits */
    tree[n * 2]/*.Code*/ = bi_reverse(next_code[len]++, len);

    //Tracecv(tree != static_ltree, (stderr,"\nn %3d %c l %2d c %4x (%x) ",
    //     n, (isgraph(n) ? n : ' '), len, tree[n].Code, next_code[len]-1));
  }
}


/* ===========================================================================
 * Initialize the various 'constant' tables.
 */
function tr_static_init() {
  var n;        /* iterates over tree elements */
  var bits;     /* bit counter */
  var length;   /* length value */
  var code;     /* code value */
  var dist;     /* distance index */
  var bl_count = new Array(MAX_BITS + 1);
  /* number of codes at each bit length for an optimal tree */

  // do check in _tr_init()
  //if (static_init_done) return;

  /* For some embedded targets, global variables are not initialized: */
/*#ifdef NO_INIT_GLOBAL_POINTERS
  static_l_desc.static_tree = static_ltree;
  static_l_desc.extra_bits = extra_lbits;
  static_d_desc.static_tree = static_dtree;
  static_d_desc.extra_bits = extra_dbits;
  static_bl_desc.extra_bits = extra_blbits;
#endif*/

  /* Initialize the mapping length (0..255) -> length code (0..28) */
  length = 0;
  for (code = 0; code < LENGTH_CODES - 1; code++) {
    base_length[code] = length;
    for (n = 0; n < (1 << extra_lbits[code]); n++) {
      _length_code[length++] = code;
    }
  }
  //Assert (length == 256, "tr_static_init: length != 256");
  /* Note that the length 255 (match length 258) can be represented
   * in two different ways: code 284 + 5 bits or code 285, so we
   * overwrite length_code[255] to use the best encoding:
   */
  _length_code[length - 1] = code;

  /* Initialize the mapping dist (0..32K) -> dist code (0..29) */
  dist = 0;
  for (code = 0; code < 16; code++) {
    base_dist[code] = dist;
    for (n = 0; n < (1 << extra_dbits[code]); n++) {
      _dist_code[dist++] = code;
    }
  }
  //Assert (dist == 256, "tr_static_init: dist != 256");
  dist >>= 7; /* from now on, all distances are divided by 128 */
  for (; code < D_CODES; code++) {
    base_dist[code] = dist << 7;
    for (n = 0; n < (1 << (extra_dbits[code] - 7)); n++) {
      _dist_code[256 + dist++] = code;
    }
  }
  //Assert (dist == 256, "tr_static_init: 256+dist != 512");

  /* Construct the codes of the static literal tree */
  for (bits = 0; bits <= MAX_BITS; bits++) {
    bl_count[bits] = 0;
  }

  n = 0;
  while (n <= 143) {
    static_ltree[n * 2 + 1]/*.Len*/ = 8;
    n++;
    bl_count[8]++;
  }
  while (n <= 255) {
    static_ltree[n * 2 + 1]/*.Len*/ = 9;
    n++;
    bl_count[9]++;
  }
  while (n <= 279) {
    static_ltree[n * 2 + 1]/*.Len*/ = 7;
    n++;
    bl_count[7]++;
  }
  while (n <= 287) {
    static_ltree[n * 2 + 1]/*.Len*/ = 8;
    n++;
    bl_count[8]++;
  }
  /* Codes 286 and 287 do not exist, but we must include them in the
   * tree construction to get a canonical Huffman tree (longest code
   * all ones)
   */
  gen_codes(static_ltree, L_CODES + 1, bl_count);

  /* The static distance tree is trivial: */
  for (n = 0; n < D_CODES; n++) {
    static_dtree[n * 2 + 1]/*.Len*/ = 5;
    static_dtree[n * 2]/*.Code*/ = bi_reverse(n, 5);
  }

  // Now data ready and we can init static trees
  static_l_desc = new StaticTreeDesc(static_ltree, extra_lbits, LITERALS + 1, L_CODES, MAX_BITS);
  static_d_desc = new StaticTreeDesc(static_dtree, extra_dbits, 0,          D_CODES, MAX_BITS);
  static_bl_desc = new StaticTreeDesc(new Array(0), extra_blbits, 0,         BL_CODES, MAX_BL_BITS);

  //static_init_done = true;
}


/* ===========================================================================
 * Initialize a new block.
 */
function init_block(s) {
  var n; /* iterates over tree elements */

  /* Initialize the trees. */
  for (n = 0; n < L_CODES;  n++) { s.dyn_ltree[n * 2]/*.Freq*/ = 0; }
  for (n = 0; n < D_CODES;  n++) { s.dyn_dtree[n * 2]/*.Freq*/ = 0; }
  for (n = 0; n < BL_CODES; n++) { s.bl_tree[n * 2]/*.Freq*/ = 0; }

  s.dyn_ltree[END_BLOCK * 2]/*.Freq*/ = 1;
  s.opt_len = s.static_len = 0;
  s.last_lit = s.matches = 0;
}


/* ===========================================================================
 * Flush the bit buffer and align the output on a byte boundary
 */
function bi_windup(s)
{
  if (s.bi_valid > 8) {
    put_short(s, s.bi_buf);
  } else if (s.bi_valid > 0) {
    //put_byte(s, (Byte)s->bi_buf);
    s.pending_buf[s.pending++] = s.bi_buf;
  }
  s.bi_buf = 0;
  s.bi_valid = 0;
}

/* ===========================================================================
 * Copy a stored block, storing first the length and its
 * one's complement if requested.
 */
function copy_block(s, buf, len, header)
//DeflateState *s;
//charf    *buf;    /* the input data */
//unsigned len;     /* its length */
//int      header;  /* true if block header must be written */
{
  bi_windup(s);        /* align on byte boundary */

  if (header) {
    put_short(s, len);
    put_short(s, ~len);
  }
//  while (len--) {
//    put_byte(s, *buf++);
//  }
  utils.arraySet(s.pending_buf, s.window, buf, len, s.pending);
  s.pending += len;
}

/* ===========================================================================
 * Compares to subtrees, using the tree depth as tie breaker when
 * the subtrees have equal frequency. This minimizes the worst case length.
 */
function smaller(tree, n, m, depth) {
  var _n2 = n * 2;
  var _m2 = m * 2;
  return (tree[_n2]/*.Freq*/ < tree[_m2]/*.Freq*/ ||
         (tree[_n2]/*.Freq*/ === tree[_m2]/*.Freq*/ && depth[n] <= depth[m]));
}

/* ===========================================================================
 * Restore the heap property by moving down the tree starting at node k,
 * exchanging a node with the smallest of its two sons if necessary, stopping
 * when the heap property is re-established (each father smaller than its
 * two sons).
 */
function pqdownheap(s, tree, k)
//    deflate_state *s;
//    ct_data *tree;  /* the tree to restore */
//    int k;               /* node to move down */
{
  var v = s.heap[k];
  var j = k << 1;  /* left son of k */
  while (j <= s.heap_len) {
    /* Set j to the smallest of the two sons: */
    if (j < s.heap_len &&
      smaller(tree, s.heap[j + 1], s.heap[j], s.depth)) {
      j++;
    }
    /* Exit if v is smaller than both sons */
    if (smaller(tree, v, s.heap[j], s.depth)) { break; }

    /* Exchange v with the smallest son */
    s.heap[k] = s.heap[j];
    k = j;

    /* And continue down the tree, setting j to the left son of k */
    j <<= 1;
  }
  s.heap[k] = v;
}


// inlined manually
// var SMALLEST = 1;

/* ===========================================================================
 * Send the block data compressed using the given Huffman trees
 */
function compress_block(s, ltree, dtree)
//    deflate_state *s;
//    const ct_data *ltree; /* literal tree */
//    const ct_data *dtree; /* distance tree */
{
  var dist;           /* distance of matched string */
  var lc;             /* match length or unmatched char (if dist == 0) */
  var lx = 0;         /* running index in l_buf */
  var code;           /* the code to send */
  var extra;          /* number of extra bits to send */

  if (s.last_lit !== 0) {
    do {
      dist = (s.pending_buf[s.d_buf + lx * 2] << 8) | (s.pending_buf[s.d_buf + lx * 2 + 1]);
      lc = s.pending_buf[s.l_buf + lx];
      lx++;

      if (dist === 0) {
        send_code(s, lc, ltree); /* send a literal byte */
        //Tracecv(isgraph(lc), (stderr," '%c' ", lc));
      } else {
        /* Here, lc is the match length - MIN_MATCH */
        code = _length_code[lc];
        send_code(s, code + LITERALS + 1, ltree); /* send the length code */
        extra = extra_lbits[code];
        if (extra !== 0) {
          lc -= base_length[code];
          send_bits(s, lc, extra);       /* send the extra length bits */
        }
        dist--; /* dist is now the match distance - 1 */
        code = d_code(dist);
        //Assert (code < D_CODES, "bad d_code");

        send_code(s, code, dtree);       /* send the distance code */
        extra = extra_dbits[code];
        if (extra !== 0) {
          dist -= base_dist[code];
          send_bits(s, dist, extra);   /* send the extra distance bits */
        }
      } /* literal or match pair ? */

      /* Check that the overlay between pending_buf and d_buf+l_buf is ok: */
      //Assert((uInt)(s->pending) < s->lit_bufsize + 2*lx,
      //       "pendingBuf overflow");

    } while (lx < s.last_lit);
  }

  send_code(s, END_BLOCK, ltree);
}


/* ===========================================================================
 * Construct one Huffman tree and assigns the code bit strings and lengths.
 * Update the total bit length for the current block.
 * IN assertion: the field freq is set for all tree elements.
 * OUT assertions: the fields len and code are set to the optimal bit length
 *     and corresponding code. The length opt_len is updated; static_len is
 *     also updated if stree is not null. The field max_code is set.
 */
function build_tree(s, desc)
//    deflate_state *s;
//    tree_desc *desc; /* the tree descriptor */
{
  var tree     = desc.dyn_tree;
  var stree    = desc.stat_desc.static_tree;
  var has_stree = desc.stat_desc.has_stree;
  var elems    = desc.stat_desc.elems;
  var n, m;          /* iterate over heap elements */
  var max_code = -1; /* largest code with non zero frequency */
  var node;          /* new node being created */

  /* Construct the initial heap, with least frequent element in
   * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1].
   * heap[0] is not used.
   */
  s.heap_len = 0;
  s.heap_max = HEAP_SIZE;

  for (n = 0; n < elems; n++) {
    if (tree[n * 2]/*.Freq*/ !== 0) {
      s.heap[++s.heap_len] = max_code = n;
      s.depth[n] = 0;

    } else {
      tree[n * 2 + 1]/*.Len*/ = 0;
    }
  }

  /* The pkzip format requires that at least one distance code exists,
   * and that at least one bit should be sent even if there is only one
   * possible code. So to avoid special checks later on we force at least
   * two codes of non zero frequency.
   */
  while (s.heap_len < 2) {
    node = s.heap[++s.heap_len] = (max_code < 2 ? ++max_code : 0);
    tree[node * 2]/*.Freq*/ = 1;
    s.depth[node] = 0;
    s.opt_len--;

    if (has_stree) {
      s.static_len -= stree[node * 2 + 1]/*.Len*/;
    }
    /* node is 0 or 1 so it does not have extra bits */
  }
  desc.max_code = max_code;

  /* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree,
   * establish sub-heaps of increasing lengths:
   */
  for (n = (s.heap_len >> 1/*int /2*/); n >= 1; n--) { pqdownheap(s, tree, n); }

  /* Construct the Huffman tree by repeatedly combining the least two
   * frequent nodes.
   */
  node = elems;              /* next internal node of the tree */
  do {
    //pqremove(s, tree, n);  /* n = node of least frequency */
    /*** pqremove ***/
    n = s.heap[1/*SMALLEST*/];
    s.heap[1/*SMALLEST*/] = s.heap[s.heap_len--];
    pqdownheap(s, tree, 1/*SMALLEST*/);
    /***/

    m = s.heap[1/*SMALLEST*/]; /* m = node of next least frequency */

    s.heap[--s.heap_max] = n; /* keep the nodes sorted by frequency */
    s.heap[--s.heap_max] = m;

    /* Create a new node father of n and m */
    tree[node * 2]/*.Freq*/ = tree[n * 2]/*.Freq*/ + tree[m * 2]/*.Freq*/;
    s.depth[node] = (s.depth[n] >= s.depth[m] ? s.depth[n] : s.depth[m]) + 1;
    tree[n * 2 + 1]/*.Dad*/ = tree[m * 2 + 1]/*.Dad*/ = node;

    /* and insert the new node in the heap */
    s.heap[1/*SMALLEST*/] = node++;
    pqdownheap(s, tree, 1/*SMALLEST*/);

  } while (s.heap_len >= 2);

  s.heap[--s.heap_max] = s.heap[1/*SMALLEST*/];

  /* At this point, the fields freq and dad are set. We can now
   * generate the bit lengths.
   */
  gen_bitlen(s, desc);

  /* The field len is now set, we can generate the bit codes */
  gen_codes(tree, max_code, s.bl_count);
}


/* ===========================================================================
 * Scan a literal or distance tree to determine the frequencies of the codes
 * in the bit length tree.
 */
function scan_tree(s, tree, max_code)
//    deflate_state *s;
//    ct_data *tree;   /* the tree to be scanned */
//    int max_code;    /* and its largest code of non zero frequency */
{
  var n;                     /* iterates over all tree elements */
  var prevlen = -1;          /* last emitted length */
  var curlen;                /* length of current code */

  var nextlen = tree[0 * 2 + 1]/*.Len*/; /* length of next code */

  var count = 0;             /* repeat count of the current code */
  var max_count = 7;         /* max repeat count */
  var min_count = 4;         /* min repeat count */

  if (nextlen === 0) {
    max_count = 138;
    min_count = 3;
  }
  tree[(max_code + 1) * 2 + 1]/*.Len*/ = 0xffff; /* guard */

  for (n = 0; n <= max_code; n++) {
    curlen = nextlen;
    nextlen = tree[(n + 1) * 2 + 1]/*.Len*/;

    if (++count < max_count && curlen === nextlen) {
      continue;

    } else if (count < min_count) {
      s.bl_tree[curlen * 2]/*.Freq*/ += count;

    } else if (curlen !== 0) {

      if (curlen !== prevlen) { s.bl_tree[curlen * 2]/*.Freq*/++; }
      s.bl_tree[REP_3_6 * 2]/*.Freq*/++;

    } else if (count <= 10) {
      s.bl_tree[REPZ_3_10 * 2]/*.Freq*/++;

    } else {
      s.bl_tree[REPZ_11_138 * 2]/*.Freq*/++;
    }

    count = 0;
    prevlen = curlen;

    if (nextlen === 0) {
      max_count = 138;
      min_count = 3;

    } else if (curlen === nextlen) {
      max_count = 6;
      min_count = 3;

    } else {
      max_count = 7;
      min_count = 4;
    }
  }
}


/* ===========================================================================
 * Send a literal or distance tree in compressed form, using the codes in
 * bl_tree.
 */
function send_tree(s, tree, max_code)
//    deflate_state *s;
//    ct_data *tree; /* the tree to be scanned */
//    int max_code;       /* and its largest code of non zero frequency */
{
  var n;                     /* iterates over all tree elements */
  var prevlen = -1;          /* last emitted length */
  var curlen;                /* length of current code */

  var nextlen = tree[0 * 2 + 1]/*.Len*/; /* length of next code */

  var count = 0;             /* repeat count of the current code */
  var max_count = 7;         /* max repeat count */
  var min_count = 4;         /* min repeat count */

  /* tree[max_code+1].Len = -1; */  /* guard already set */
  if (nextlen === 0) {
    max_count = 138;
    min_count = 3;
  }

  for (n = 0; n <= max_code; n++) {
    curlen = nextlen;
    nextlen = tree[(n + 1) * 2 + 1]/*.Len*/;

    if (++count < max_count && curlen === nextlen) {
      continue;

    } else if (count < min_count) {
      do { send_code(s, curlen, s.bl_tree); } while (--count !== 0);

    } else if (curlen !== 0) {
      if (curlen !== prevlen) {
        send_code(s, curlen, s.bl_tree);
        count--;
      }
      //Assert(count >= 3 && count <= 6, " 3_6?");
      send_code(s, REP_3_6, s.bl_tree);
      send_bits(s, count - 3, 2);

    } else if (count <= 10) {
      send_code(s, REPZ_3_10, s.bl_tree);
      send_bits(s, count - 3, 3);

    } else {
      send_code(s, REPZ_11_138, s.bl_tree);
      send_bits(s, count - 11, 7);
    }

    count = 0;
    prevlen = curlen;
    if (nextlen === 0) {
      max_count = 138;
      min_count = 3;

    } else if (curlen === nextlen) {
      max_count = 6;
      min_count = 3;

    } else {
      max_count = 7;
      min_count = 4;
    }
  }
}


/* ===========================================================================
 * Construct the Huffman tree for the bit lengths and return the index in
 * bl_order of the last bit length code to send.
 */
function build_bl_tree(s) {
  var max_blindex;  /* index of last bit length code of non zero freq */

  /* Determine the bit length frequencies for literal and distance trees */
  scan_tree(s, s.dyn_ltree, s.l_desc.max_code);
  scan_tree(s, s.dyn_dtree, s.d_desc.max_code);

  /* Build the bit length tree: */
  build_tree(s, s.bl_desc);
  /* opt_len now includes the length of the tree representations, except
   * the lengths of the bit lengths codes and the 5+5+4 bits for the counts.
   */

  /* Determine the number of bit length codes to send. The pkzip format
   * requires that at least 4 bit length codes be sent. (appnote.txt says
   * 3 but the actual value used is 4.)
   */
  for (max_blindex = BL_CODES - 1; max_blindex >= 3; max_blindex--) {
    if (s.bl_tree[bl_order[max_blindex] * 2 + 1]/*.Len*/ !== 0) {
      break;
    }
  }
  /* Update opt_len to include the bit length tree and counts */
  s.opt_len += 3 * (max_blindex + 1) + 5 + 5 + 4;
  //Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld",
  //        s->opt_len, s->static_len));

  return max_blindex;
}


/* ===========================================================================
 * Send the header for a block using dynamic Huffman trees: the counts, the
 * lengths of the bit length codes, the literal tree and the distance tree.
 * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4.
 */
function send_all_trees(s, lcodes, dcodes, blcodes)
//    deflate_state *s;
//    int lcodes, dcodes, blcodes; /* number of codes for each tree */
{
  var rank;                    /* index in bl_order */

  //Assert (lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes");
  //Assert (lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES,
  //        "too many codes");
  //Tracev((stderr, "\nbl counts: "));
  send_bits(s, lcodes - 257, 5); /* not +255 as stated in appnote.txt */
  send_bits(s, dcodes - 1,   5);
  send_bits(s, blcodes - 4,  4); /* not -3 as stated in appnote.txt */
  for (rank = 0; rank < blcodes; rank++) {
    //Tracev((stderr, "\nbl code %2d ", bl_order[rank]));
    send_bits(s, s.bl_tree[bl_order[rank] * 2 + 1]/*.Len*/, 3);
  }
  //Tracev((stderr, "\nbl tree: sent %ld", s->bits_sent));

  send_tree(s, s.dyn_ltree, lcodes - 1); /* literal tree */
  //Tracev((stderr, "\nlit tree: sent %ld", s->bits_sent));

  send_tree(s, s.dyn_dtree, dcodes - 1); /* distance tree */
  //Tracev((stderr, "\ndist tree: sent %ld", s->bits_sent));
}


/* ===========================================================================
 * Check if the data type is TEXT or BINARY, using the following algorithm:
 * - TEXT if the two conditions below are satisfied:
 *    a) There are no non-portable control characters belonging to the
 *       "black list" (0..6, 14..25, 28..31).
 *    b) There is at least one printable character belonging to the
 *       "white list" (9 {TAB}, 10 {LF}, 13 {CR}, 32..255).
 * - BINARY otherwise.
 * - The following partially-portable control characters form a
 *   "gray list" that is ignored in this detection algorithm:
 *   (7 {BEL}, 8 {BS}, 11 {VT}, 12 {FF}, 26 {SUB}, 27 {ESC}).
 * IN assertion: the fields Freq of dyn_ltree are set.
 */
function detect_data_type(s) {
  /* black_mask is the bit mask of black-listed bytes
   * set bits 0..6, 14..25, and 28..31
   * 0xf3ffc07f = binary 11110011111111111100000001111111
   */
  var black_mask = 0xf3ffc07f;
  var n;

  /* Check for non-textual ("black-listed") bytes. */
  for (n = 0; n <= 31; n++, black_mask >>>= 1) {
    if ((black_mask & 1) && (s.dyn_ltree[n * 2]/*.Freq*/ !== 0)) {
      return Z_BINARY;
    }
  }

  /* Check for textual ("white-listed") bytes. */
  if (s.dyn_ltree[9 * 2]/*.Freq*/ !== 0 || s.dyn_ltree[10 * 2]/*.Freq*/ !== 0 ||
      s.dyn_ltree[13 * 2]/*.Freq*/ !== 0) {
    return Z_TEXT;
  }
  for (n = 32; n < LITERALS; n++) {
    if (s.dyn_ltree[n * 2]/*.Freq*/ !== 0) {
      return Z_TEXT;
    }
  }

  /* There are no "black-listed" or "white-listed" bytes:
   * this stream either is empty or has tolerated ("gray-listed") bytes only.
   */
  return Z_BINARY;
}


var static_init_done = false;

/* ===========================================================================
 * Initialize the tree data structures for a new zlib stream.
 */
function _tr_init(s)
{

  if (!static_init_done) {
    tr_static_init();
    static_init_done = true;
  }

  s.l_desc  = new TreeDesc(s.dyn_ltree, static_l_desc);
  s.d_desc  = new TreeDesc(s.dyn_dtree, static_d_desc);
  s.bl_desc = new TreeDesc(s.bl_tree, static_bl_desc);

  s.bi_buf = 0;
  s.bi_valid = 0;

  /* Initialize the first block of the first file: */
  init_block(s);
}


/* ===========================================================================
 * Send a stored block
 */
function _tr_stored_block(s, buf, stored_len, last)
//DeflateState *s;
//charf *buf;       /* input block */
//ulg stored_len;   /* length of input block */
//int last;         /* one if this is the last block for a file */
{
  send_bits(s, (STORED_BLOCK << 1) + (last ? 1 : 0), 3);    /* send block type */
  copy_block(s, buf, stored_len, true); /* with header */
}


/* ===========================================================================
 * Send one empty static block to give enough lookahead for inflate.
 * This takes 10 bits, of which 7 may remain in the bit buffer.
 */
function _tr_align(s) {
  send_bits(s, STATIC_TREES << 1, 3);
  send_code(s, END_BLOCK, static_ltree);
  bi_flush(s);
}


/* ===========================================================================
 * Determine the best encoding for the current block: dynamic trees, static
 * trees or store, and output the encoded block to the zip file.
 */
function _tr_flush_block(s, buf, stored_len, last)
//DeflateState *s;
//charf *buf;       /* input block, or NULL if too old */
//ulg stored_len;   /* length of input block */
//int last;         /* one if this is the last block for a file */
{
  var opt_lenb, static_lenb;  /* opt_len and static_len in bytes */
  var max_blindex = 0;        /* index of last bit length code of non zero freq */

  /* Build the Huffman trees unless a stored block is forced */
  if (s.level > 0) {

    /* Check if the file is binary or text */
    if (s.strm.data_type === Z_UNKNOWN) {
      s.strm.data_type = detect_data_type(s);
    }

    /* Construct the literal and distance trees */
    build_tree(s, s.l_desc);
    // Tracev((stderr, "\nlit data: dyn %ld, stat %ld", s->opt_len,
    //        s->static_len));

    build_tree(s, s.d_desc);
    // Tracev((stderr, "\ndist data: dyn %ld, stat %ld", s->opt_len,
    //        s->static_len));
    /* At this point, opt_len and static_len are the total bit lengths of
     * the compressed block data, excluding the tree representations.
     */

    /* Build the bit length tree for the above two trees, and get the index
     * in bl_order of the last bit length code to send.
     */
    max_blindex = build_bl_tree(s);

    /* Determine the best encoding. Compute the block lengths in bytes. */
    opt_lenb = (s.opt_len + 3 + 7) >>> 3;
    static_lenb = (s.static_len + 3 + 7) >>> 3;

    // Tracev((stderr, "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u ",
    //        opt_lenb, s->opt_len, static_lenb, s->static_len, stored_len,
    //        s->last_lit));

    if (static_lenb <= opt_lenb) { opt_lenb = static_lenb; }

  } else {
    // Assert(buf != (char*)0, "lost buf");
    opt_lenb = static_lenb = stored_len + 5; /* force a stored block */
  }

  if ((stored_len + 4 <= opt_lenb) && (buf !== -1)) {
    /* 4: two words for the lengths */

    /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE.
     * Otherwise we can't have processed more than WSIZE input bytes since
     * the last block flush, because compression would have been
     * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to
     * transform a block into a stored block.
     */
    _tr_stored_block(s, buf, stored_len, last);

  } else if (s.strategy === Z_FIXED || static_lenb === opt_lenb) {

    send_bits(s, (STATIC_TREES << 1) + (last ? 1 : 0), 3);
    compress_block(s, static_ltree, static_dtree);

  } else {
    send_bits(s, (DYN_TREES << 1) + (last ? 1 : 0), 3);
    send_all_trees(s, s.l_desc.max_code + 1, s.d_desc.max_code + 1, max_blindex + 1);
    compress_block(s, s.dyn_ltree, s.dyn_dtree);
  }
  // Assert (s->compressed_len == s->bits_sent, "bad compressed size");
  /* The above check is made mod 2^32, for files larger than 512 MB
   * and uLong implemented on 32 bits.
   */
  init_block(s);

  if (last) {
    bi_windup(s);
  }
  // Tracev((stderr,"\ncomprlen %lu(%lu) ", s->compressed_len>>3,
  //       s->compressed_len-7*last));
}

/* ===========================================================================
 * Save the match info and tally the frequency counts. Return true if
 * the current block must be flushed.
 */
function _tr_tally(s, dist, lc)
//    deflate_state *s;
//    unsigned dist;  /* distance of matched string */
//    unsigned lc;    /* match length-MIN_MATCH or unmatched char (if dist==0) */
{
  //var out_length, in_length, dcode;

  s.pending_buf[s.d_buf + s.last_lit * 2]     = (dist >>> 8) & 0xff;
  s.pending_buf[s.d_buf + s.last_lit * 2 + 1] = dist & 0xff;

  s.pending_buf[s.l_buf + s.last_lit] = lc & 0xff;
  s.last_lit++;

  if (dist === 0) {
    /* lc is the unmatched char */
    s.dyn_ltree[lc * 2]/*.Freq*/++;
  } else {
    s.matches++;
    /* Here, lc is the match length - MIN_MATCH */
    dist--;             /* dist = match distance - 1 */
    //Assert((ush)dist < (ush)MAX_DIST(s) &&
    //       (ush)lc <= (ush)(MAX_MATCH-MIN_MATCH) &&
    //       (ush)d_code(dist) < (ush)D_CODES,  "_tr_tally: bad match");

    s.dyn_ltree[(_length_code[lc] + LITERALS + 1) * 2]/*.Freq*/++;
    s.dyn_dtree[d_code(dist) * 2]/*.Freq*/++;
  }

// (!) This block is disabled in zlib defaults,
// don't enable it for binary compatibility

//#ifdef TRUNCATE_BLOCK
//  /* Try to guess if it is profitable to stop the current block here */
//  if ((s.last_lit & 0x1fff) === 0 && s.level > 2) {
//    /* Compute an upper bound for the compressed length */
//    out_length = s.last_lit*8;
//    in_length = s.strstart - s.block_start;
//
//    for (dcode = 0; dcode < D_CODES; dcode++) {
//      out_length += s.dyn_dtree[dcode*2]/*.Freq*/ * (5 + extra_dbits[dcode]);
//    }
//    out_length >>>= 3;
//    //Tracev((stderr,"\nlast_lit %u, in %ld, out ~%ld(%ld%%) ",
//    //       s->last_lit, in_length, out_length,
//    //       100L - out_length*100L/in_length));
//    if (s.matches < (s.last_lit>>1)/*int /2*/ && out_length < (in_length>>1)/*int /2*/) {
//      return true;
//    }
//  }
//#endif

  return (s.last_lit === s.lit_bufsize - 1);
  /* We avoid equality with lit_bufsize because of wraparound at 64K
   * on 16 bit machines and because stored blocks are restricted to
   * 64K-1 bytes.
   */
}

exports._tr_init  = _tr_init;
exports._tr_stored_block = _tr_stored_block;
exports._tr_flush_block  = _tr_flush_block;
exports._tr_tally = _tr_tally;
exports._tr_align = _tr_align;

},{"../utils/common":1}],8:[function(require,module,exports){
'use strict';

// (C) 1995-2013 Jean-loup Gailly and Mark Adler
// (C) 2014-2017 Vitaly Puzrin and Andrey Tupitsin
//
// This software is provided 'as-is', without any express or implied
// warranty. In no event will the authors be held liable for any damages
// arising from the use of this software.
//
// Permission is granted to anyone to use this software for any purpose,
// including commercial applications, and to alter it and redistribute it
// freely, subject to the following restrictions:
//
// 1. The origin of this software must not be misrepresented; you must not
//   claim that you wrote the original software. If you use this software
//   in a product, an acknowledgment in the product documentation would be
//   appreciated but is not required.
// 2. Altered source versions must be plainly marked as such, and must not be
//   misrepresented as being the original software.
// 3. This notice may not be removed or altered from any source distribution.

function ZStream() {
  /* next input byte */
  this.input = null; // JS specific, because we have no pointers
  this.next_in = 0;
  /* number of bytes available at input */
  this.avail_in = 0;
  /* total number of input bytes read so far */
  this.total_in = 0;
  /* next output byte should be put there */
  this.output = null; // JS specific, because we have no pointers
  this.next_out = 0;
  /* remaining free space at output */
  this.avail_out = 0;
  /* total number of bytes output so far */
  this.total_out = 0;
  /* last error message, NULL if no error */
  this.msg = ''/*Z_NULL*/;
  /* not visible by applications */
  this.state = null;
  /* best guess about the data type: binary or text */
  this.data_type = 2/*Z_UNKNOWN*/;
  /* adler32 value of the uncompressed data */
  this.adler = 0;
}

module.exports = ZStream;

},{}],"/lib/deflate.js":[function(require,module,exports){
'use strict';


var zlib_deflate = require('./zlib/deflate');
var utils        = require('./utils/common');
var strings      = require('./utils/strings');
var msg          = require('./zlib/messages');
var ZStream      = require('./zlib/zstream');

var toString = Object.prototype.toString;

/* Public constants ==========================================================*/
/* ===========================================================================*/

var Z_NO_FLUSH      = 0;
var Z_FINISH        = 4;

var Z_OK            = 0;
var Z_STREAM_END    = 1;
var Z_SYNC_FLUSH    = 2;

var Z_DEFAULT_COMPRESSION = -1;

var Z_DEFAULT_STRATEGY    = 0;

var Z_DEFLATED  = 8;

/* ===========================================================================*/


/**
 * class Deflate
 *
 * Generic JS-style wrapper for zlib calls. If you don't need
 * streaming behaviour - use more simple functions: [[deflate]],
 * [[deflateRaw]] and [[gzip]].
 **/

/* internal
 * Deflate.chunks -> Array
 *
 * Chunks of output data, if [[Deflate#onData]] not overridden.
 **/

/**
 * Deflate.result -> Uint8Array|Array
 *
 * Compressed result, generated by default [[Deflate#onData]]
 * and [[Deflate#onEnd]] handlers. Filled after you push last chunk
 * (call [[Deflate#push]] with `Z_FINISH` / `true` param)  or if you
 * push a chunk with explicit flush (call [[Deflate#push]] with
 * `Z_SYNC_FLUSH` param).
 **/

/**
 * Deflate.err -> Number
 *
 * Error code after deflate finished. 0 (Z_OK) on success.
 * You will not need it in real life, because deflate errors
 * are possible only on wrong options or bad `onData` / `onEnd`
 * custom handlers.
 **/

/**
 * Deflate.msg -> String
 *
 * Error message, if [[Deflate.err]] != 0
 **/


/**
 * new Deflate(options)
 * - options (Object): zlib deflate options.
 *
 * Creates new deflator instance with specified params. Throws exception
 * on bad params. Supported options:
 *
 * - `level`
 * - `windowBits`
 * - `memLevel`
 * - `strategy`
 * - `dictionary`
 *
 * [http://zlib.net/manual.html#Advanced](http://zlib.net/manual.html#Advanced)
 * for more information on these.
 *
 * Additional options, for internal needs:
 *
 * - `chunkSize` - size of generated data chunks (16K by default)
 * - `raw` (Boolean) - do raw deflate
 * - `gzip` (Boolean) - create gzip wrapper
 * - `to` (String) - if equal to 'string', then result will be "binary string"
 *    (each char code [0..255])
 * - `header` (Object) - custom header for gzip
 *   - `text` (Boolean) - true if compressed data believed to be text
 *   - `time` (Number) - modification time, unix timestamp
 *   - `os` (Number) - operation system code
 *   - `extra` (Array) - array of bytes with extra data (max 65536)
 *   - `name` (String) - file name (binary string)
 *   - `comment` (String) - comment (binary string)
 *   - `hcrc` (Boolean) - true if header crc should be added
 *
 * ##### Example:
 *
 * ```javascript
 * var pako = require('pako')
 *   , chunk1 = Uint8Array([1,2,3,4,5,6,7,8,9])
 *   , chunk2 = Uint8Array([10,11,12,13,14,15,16,17,18,19]);
 *
 * var deflate = new pako.Deflate({ level: 3});
 *
 * deflate.push(chunk1, false);
 * deflate.push(chunk2, true);  // true -> last chunk
 *
 * if (deflate.err) { throw new Error(deflate.err); }
 *
 * console.log(deflate.result);
 * ```
 **/
function Deflate(options) {
  if (!(this instanceof Deflate)) return new Deflate(options);

  this.options = utils.assign({
    level: Z_DEFAULT_COMPRESSION,
    method: Z_DEFLATED,
    chunkSize: 16384,
    windowBits: 15,
    memLevel: 8,
    strategy: Z_DEFAULT_STRATEGY,
    to: ''
  }, options || {});

  var opt = this.options;

  if (opt.raw && (opt.windowBits > 0)) {
    opt.windowBits = -opt.windowBits;
  }

  else if (opt.gzip && (opt.windowBits > 0) && (opt.windowBits < 16)) {
    opt.windowBits += 16;
  }

  this.err    = 0;      // error code, if happens (0 = Z_OK)
  this.msg    = '';     // error message
  this.ended  = false;  // used to avoid multiple onEnd() calls
  this.chunks = [];     // chunks of compressed data

  this.strm = new ZStream();
  this.strm.avail_out = 0;

  var status = zlib_deflate.deflateInit2(
    this.strm,
    opt.level,
    opt.method,
    opt.windowBits,
    opt.memLevel,
    opt.strategy
  );

  if (status !== Z_OK) {
    throw new Error(msg[status]);
  }

  if (opt.header) {
    zlib_deflate.deflateSetHeader(this.strm, opt.header);
  }

  if (opt.dictionary) {
    var dict;
    // Convert data if needed
    if (typeof opt.dictionary === 'string') {
      // If we need to compress text, change encoding to utf8.
      dict = strings.string2buf(opt.dictionary);
    } else if (toString.call(opt.dictionary) === '[object ArrayBuffer]') {
      dict = new Uint8Array(opt.dictionary);
    } else {
      dict = opt.dictionary;
    }

    status = zlib_deflate.deflateSetDictionary(this.strm, dict);

    if (status !== Z_OK) {
      throw new Error(msg[status]);
    }

    this._dict_set = true;
  }
}

/**
 * Deflate#push(data[, mode]) -> Boolean
 * - data (Uint8Array|Array|ArrayBuffer|String): input data. Strings will be
 *   converted to utf8 byte sequence.
 * - mode (Number|Boolean): 0..6 for corresponding Z_NO_FLUSH..Z_TREE modes.
 *   See constants. Skipped or `false` means Z_NO_FLUSH, `true` means Z_FINISH.
 *
 * Sends input data to deflate pipe, generating [[Deflate#onData]] calls with
 * new compressed chunks. Returns `true` on success. The last data block must have
 * mode Z_FINISH (or `true`). That will flush internal pending buffers and call
 * [[Deflate#onEnd]]. For interim explicit flushes (without ending the stream) you
 * can use mode Z_SYNC_FLUSH, keeping the compression context.
 *
 * On fail call [[Deflate#onEnd]] with error code and return false.
 *
 * We strongly recommend to use `Uint8Array` on input for best speed (output
 * array format is detected automatically). Also, don't skip last param and always
 * use the same type in your code (boolean or number). That will improve JS speed.
 *
 * For regular `Array`-s make sure all elements are [0..255].
 *
 * ##### Example
 *
 * ```javascript
 * push(chunk, false); // push one of data chunks
 * ...
 * push(chunk, true);  // push last chunk
 * ```
 **/
Deflate.prototype.push = function (data, mode) {
  var strm = this.strm;
  var chunkSize = this.options.chunkSize;
  var status, _mode;

  if (this.ended) { return false; }

  _mode = (mode === ~~mode) ? mode : ((mode === true) ? Z_FINISH : Z_NO_FLUSH);

  // Convert data if needed
  if (typeof data === 'string') {
    // If we need to compress text, change encoding to utf8.
    strm.input = strings.string2buf(data);
  } else if (toString.call(data) === '[object ArrayBuffer]') {
    strm.input = new Uint8Array(data);
  } else {
    strm.input = data;
  }

  strm.next_in = 0;
  strm.avail_in = strm.input.length;

  do {
    if (strm.avail_out === 0) {
      strm.output = new utils.Buf8(chunkSize);
      strm.next_out = 0;
      strm.avail_out = chunkSize;
    }
    status = zlib_deflate.deflate(strm, _mode);    /* no bad return value */

    if (status !== Z_STREAM_END && status !== Z_OK) {
      this.onEnd(status);
      this.ended = true;
      return false;
    }
    if (strm.avail_out === 0 || (strm.avail_in === 0 && (_mode === Z_FINISH || _mode === Z_SYNC_FLUSH))) {
      if (this.options.to === 'string') {
        this.onData(strings.buf2binstring(utils.shrinkBuf(strm.output, strm.next_out)));
      } else {
        this.onData(utils.shrinkBuf(strm.output, strm.next_out));
      }
    }
  } while ((strm.avail_in > 0 || strm.avail_out === 0) && status !== Z_STREAM_END);

  // Finalize on the last chunk.
  if (_mode === Z_FINISH) {
    status = zlib_deflate.deflateEnd(this.strm);
    this.onEnd(status);
    this.ended = true;
    return status === Z_OK;
  }

  // callback interim results if Z_SYNC_FLUSH.
  if (_mode === Z_SYNC_FLUSH) {
    this.onEnd(Z_OK);
    strm.avail_out = 0;
    return true;
  }

  return true;
};


/**
 * Deflate#onData(chunk) -> Void
 * - chunk (Uint8Array|Array|String): output data. Type of array depends
 *   on js engine support. When string output requested, each chunk
 *   will be string.
 *
 * By default, stores data blocks in `chunks[]` property and glue
 * those in `onEnd`. Override this handler, if you need another behaviour.
 **/
Deflate.prototype.onData = function (chunk) {
  this.chunks.push(chunk);
};


/**
 * Deflate#onEnd(status) -> Void
 * - status (Number): deflate status. 0 (Z_OK) on success,
 *   other if not.
 *
 * Called once after you tell deflate that the input stream is
 * complete (Z_FINISH) or should be flushed (Z_SYNC_FLUSH)
 * or if an error happened. By default - join collected chunks,
 * free memory and fill `results` / `err` properties.
 **/
Deflate.prototype.onEnd = function (status) {
  // On success - join
  if (status === Z_OK) {
    if (this.options.to === 'string') {
      this.result = this.chunks.join('');
    } else {
      this.result = utils.flattenChunks(this.chunks);
    }
  }
  this.chunks = [];
  this.err = status;
  this.msg = this.strm.msg;
};


/**
 * deflate(data[, options]) -> Uint8Array|Array|String
 * - data (Uint8Array|Array|String): input data to compress.
 * - options (Object): zlib deflate options.
 *
 * Compress `data` with deflate algorithm and `options`.
 *
 * Supported options are:
 *
 * - level
 * - windowBits
 * - memLevel
 * - strategy
 * - dictionary
 *
 * [http://zlib.net/manual.html#Advanced](http://zlib.net/manual.html#Advanced)
 * for more information on these.
 *
 * Sugar (options):
 *
 * - `raw` (Boolean) - say that we work with raw stream, if you don't wish to specify
 *   negative windowBits implicitly.
 * - `to` (String) - if equal to 'string', then result will be "binary string"
 *    (each char code [0..255])
 *
 * ##### Example:
 *
 * ```javascript
 * var pako = require('pako')
 *   , data = Uint8Array([1,2,3,4,5,6,7,8,9]);
 *
 * console.log(pako.deflate(data));
 * ```
 **/
function deflate(input, options) {
  var deflator = new Deflate(options);

  deflator.push(input, true);

  // That will never happens, if you don't cheat with options :)
  if (deflator.err) { throw deflator.msg || msg[deflator.err]; }

  return deflator.result;
}


/**
 * deflateRaw(data[, options]) -> Uint8Array|Array|String
 * - data (Uint8Array|Array|String): input data to compress.
 * - options (Object): zlib deflate options.
 *
 * The same as [[deflate]], but creates raw data, without wrapper
 * (header and adler32 crc).
 **/
function deflateRaw(input, options) {
  options = options || {};
  options.raw = true;
  return deflate(input, options);
}


/**
 * gzip(data[, options]) -> Uint8Array|Array|String
 * - data (Uint8Array|Array|String): input data to compress.
 * - options (Object): zlib deflate options.
 *
 * The same as [[deflate]], but create gzip wrapper instead of
 * deflate one.
 **/
function gzip(input, options) {
  options = options || {};
  options.gzip = true;
  return deflate(input, options);
}


exports.Deflate = Deflate;
exports.deflate = deflate;
exports.deflateRaw = deflateRaw;
exports.gzip = gzip;

},{"./utils/common":1,"./utils/strings":2,"./zlib/deflate":5,"./zlib/messages":6,"./zlib/zstream":8}]},{},[])("/lib/deflate.js")
});